A data-driven α-policy iteration algorithm for optimal leader-following consensus of discrete-time multi-agent systems

In this paper, the data-driven α-policy iteration (PI) algorithm is proposed to address the optimal leader-following consensus problem of discrete-time multi-agent systems (MASs). Unlike existing results for state consensus problem that utilise the PI algorithm, the novel algorithm leverages only th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of systems science Ročník 56; číslo 16; s. 4055 - 4072
Hlavní autoři: Xiang, Aoxue, Zhao, Xinyuan, Ma, Ruicheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Taylor & Francis 10.12.2025
Taylor & Francis Ltd
Témata:
ISSN:0020-7721, 1464-5319
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the data-driven α-policy iteration (PI) algorithm is proposed to address the optimal leader-following consensus problem of discrete-time multi-agent systems (MASs). Unlike existing results for state consensus problem that utilise the PI algorithm, the novel algorithm leverages only the system's trajectory from historical data over a finite number of steps and and does not require an admissible initial policy. Firstly, the linear quadratic regulator (LQR) design method is applied to derive the Bellman equation and the control policy based on the available measured data. Then, the data-driven α-PI algorithm is introduced, demonstrating a convergence rate that outperforms the value iteration (VI) algorithm and enabling all follower agents to track the trajectory of the leader agent. Finally, two examples are presented to demonstrate the performance of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7721
1464-5319
DOI:10.1080/00207721.2025.2482006