Harmonic wavelets in boundary value problems for harmonic and biharmonic functions

We consider boundary value problems in a disk and in a ring for homogeneous equations with the Laplace operator of the first and second orders. Solutions are represented in terms of bases of harmonic wavelets in Hardy spaces of harmonic functions in a disk and in a ring, which were constructed earli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Steklov Institute of Mathematics Ročník 273; číslo Suppl 1; s. 142 - 159
Hlavní autoři: Subbotin, Yu. N., Chernykh, N. I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.07.2011
Témata:
ISSN:0081-5438, 1531-8605
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider boundary value problems in a disk and in a ring for homogeneous equations with the Laplace operator of the first and second orders. Solutions are represented in terms of bases of harmonic wavelets in Hardy spaces of harmonic functions in a disk and in a ring, which were constructed earlier.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543811050154