Harmonic wavelets in boundary value problems for harmonic and biharmonic functions
We consider boundary value problems in a disk and in a ring for homogeneous equations with the Laplace operator of the first and second orders. Solutions are represented in terms of bases of harmonic wavelets in Hardy spaces of harmonic functions in a disk and in a ring, which were constructed earli...
Uloženo v:
| Vydáno v: | Proceedings of the Steklov Institute of Mathematics Ročník 273; číslo Suppl 1; s. 142 - 159 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
SP MAIK Nauka/Interperiodica
01.07.2011
|
| Témata: | |
| ISSN: | 0081-5438, 1531-8605 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider boundary value problems in a disk and in a ring for homogeneous equations with the Laplace operator of the first and second orders. Solutions are represented in terms of bases of harmonic wavelets in Hardy spaces of harmonic functions in a disk and in a ring, which were constructed earlier. |
|---|---|
| ISSN: | 0081-5438 1531-8605 |
| DOI: | 10.1134/S0081543811050154 |