Harmonic wavelets in boundary value problems for harmonic and biharmonic functions
We consider boundary value problems in a disk and in a ring for homogeneous equations with the Laplace operator of the first and second orders. Solutions are represented in terms of bases of harmonic wavelets in Hardy spaces of harmonic functions in a disk and in a ring, which were constructed earli...
Uložené v:
| Vydané v: | Proceedings of the Steklov Institute of Mathematics Ročník 273; číslo Suppl 1; s. 142 - 159 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
SP MAIK Nauka/Interperiodica
01.07.2011
|
| Predmet: | |
| ISSN: | 0081-5438, 1531-8605 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider boundary value problems in a disk and in a ring for homogeneous equations with the Laplace operator of the first and second orders. Solutions are represented in terms of bases of harmonic wavelets in Hardy spaces of harmonic functions in a disk and in a ring, which were constructed earlier. |
|---|---|
| ISSN: | 0081-5438 1531-8605 |
| DOI: | 10.1134/S0081543811050154 |