Recent progress in augmenting turbulence models with physics-informed machine learning

In view of the long stagnation in traditional turbulence modeling, researchers have attempted using machine learning to augment turbulence models. This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning. We also discuss ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrodynamics. Series B Jg. 31; H. 6; S. 1153 - 1158
Hauptverfasser: Zhang, Xinlei, Wu, Jinlong, Coutier-Delgosha, Olivier, Xiao, Heng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.12.2019
Schlagworte:
ISSN:1001-6058, 1878-0342
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In view of the long stagnation in traditional turbulence modeling, researchers have attempted using machine learning to augment turbulence models. This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning. We also discuss our works on ensemble-based field inversion to provide training data for constructing machine learning models. Future and on-going research efforts are introduced.
ISSN:1001-6058
1878-0342
DOI:10.1007/s42241-019-0089-y