Recent progress in augmenting turbulence models with physics-informed machine learning

In view of the long stagnation in traditional turbulence modeling, researchers have attempted using machine learning to augment turbulence models. This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning. We also discuss ou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrodynamics. Series B Vol. 31; no. 6; pp. 1153 - 1158
Main Authors: Zhang, Xinlei, Wu, Jinlong, Coutier-Delgosha, Olivier, Xiao, Heng
Format: Journal Article
Language:English
Published: Singapore Springer Singapore 01.12.2019
Subjects:
ISSN:1001-6058, 1878-0342
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In view of the long stagnation in traditional turbulence modeling, researchers have attempted using machine learning to augment turbulence models. This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning. We also discuss our works on ensemble-based field inversion to provide training data for constructing machine learning models. Future and on-going research efforts are introduced.
AbstractList In view of the long stagnation in traditional turbulence modeling, researchers have attempted using machine learning to augment turbulence models. This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning. We also discuss our works on ensemble-based field inversion to provide training data for constructing machine learning models. Future and on-going research efforts are introduced.
Author Zhang, Xinlei
Xiao, Heng
Wu, Jinlong
Coutier-Delgosha, Olivier
Author_xml – sequence: 1
  givenname: Xinlei
  surname: Zhang
  fullname: Zhang, Xinlei
  organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Laboratoire de Mécanique des Fluides de Lille — Kampé de Fériet, Arts et Metiers ParisTech
– sequence: 2
  givenname: Jinlong
  surname: Wu
  fullname: Wu, Jinlong
  organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech
– sequence: 3
  givenname: Olivier
  surname: Coutier-Delgosha
  fullname: Coutier-Delgosha, Olivier
  organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Laboratoire de Mécanique des Fluides de Lille — Kampé de Fériet, Arts et Metiers ParisTech
– sequence: 4
  givenname: Heng
  surname: Xiao
  fullname: Xiao, Heng
  email: hengxiao@vt.edu
  organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech
BookMark eNp9kNtKAzEQhoNUsFYfwLu8QHSSzR5yKcUTFARRb0M2O7tN2c2WZBfp25tSr7woDMzwM9_AfNdk4UePhNxxuOcA5UOUQkjOgCsGUCl2uCBLXpUVg0yKRZoBOCsgr67IdYw7gKxQIJfk-wMt-onuw9gFjJE6T83cDSlzvqPTHOq5R2-RDmODfaQ_btrS_fYQnY3M-XYMAzZ0MHbrPNIeTfAJvCGXrekj3v71Ffl6fvpcv7LN-8vb-nHDrKiqiSllam6kylusuTRlrgyathGNqJVoeGYKiUXbYCltxQtu8jJVCzkvsGwKo7IVKU93bRhjDNhq6yYzudFPwbhec9BHPfqkRyc9-qhHHxLJ_5H74AYTDmcZcWJi2vUdBr0b5-DTg2egX3yFfPE
CitedBy_id crossref_primary_10_1016_j_joei_2025_101991
crossref_primary_10_1016_j_measurement_2023_113782
crossref_primary_10_1145_3768158
crossref_primary_10_1016_j_cma_2022_115396
crossref_primary_10_3390_en14041055
crossref_primary_10_1088_2632_2153_ad7d60
crossref_primary_10_1016_j_compfluid_2021_105113
crossref_primary_10_1145_3689037
crossref_primary_10_1007_s10462_024_10867_3
crossref_primary_10_1016_j_compfluid_2020_104777
crossref_primary_10_2514_1_J061396
crossref_primary_10_3390_en15196861
crossref_primary_10_1016_j_enganabound_2023_01_010
crossref_primary_10_1016_j_ijheatfluidflow_2025_109847
crossref_primary_10_1007_s42241_020_0077_2
crossref_primary_10_1016_j_jcp_2022_111145
crossref_primary_10_1007_s42241_023_0042_y
crossref_primary_10_3390_math10162945
crossref_primary_10_1016_j_oceaneng_2022_110934
Cites_doi 10.1016/j.ijheatfluidflow.2017.09.017
10.1016/j.jcp.2016.07.038
10.1016/j.cma.2018.09.010
10.1007/s00162-018-0480-2
10.1038/scientificamerican0197-62
10.1007/s42241-018-0156-9
10.1063/1.5061693
10.1146/annurev-fluid-010518-040547
10.1016/j.compfluid.2008.05.002
10.1063/1.4927765
10.1016/j.cma.2020.113097
10.1016/0094-4548(74)90150-7
10.1103/PhysRevFluids.2.034603
10.1016/j.paerosci.2018.10.001
10.1016/S1270-9638(97)90051-1
10.1103/PhysRevFluids.3.074602
10.1063/1.4824659
10.1017/jfm.2016.615
10.1016/j.compfluid.2020.104431
10.2514/6.2015-1287
10.1016/j.compfluid.2019.104292
10.2514/3.12149
10.1017/jfm.2019.205
10.1016/j.jcp.2020.109517
10.1016/j.compfluid.2004.06.005
10.1007/s10494-017-9807-0
10.1016/j.jcp.2015.11.012
10.2514/1.J055595
10.1016/j.jcp.2016.08.015
10.1016/j.paerosci.2014.12.004
10.2514/6.2011-479
ContentType Journal Article
Copyright China Ship Scientific Research Center 2019
Copyright_xml – notice: China Ship Scientific Research Center 2019
DBID AAYXX
CITATION
DOI 10.1007/s42241-019-0089-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0342
EndPage 1158
ExternalDocumentID 10_1007_s42241_019_0089_y
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
7-5
71M
8P~
92H
92I
92M
9D9
9DA
AABNK
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIAL
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AAQFI
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABWVN
ABXDB
ABXPI
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACMLO
ACNNM
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADEZE
ADHHG
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFQL
AEIPS
AEJRE
AEKER
AEMSY
AENEX
AEPYU
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGRTI
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIGIU
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIGPU
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~LB
9DU
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACLOT
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c288t-99ab1a495feb14a759aeafd2d2b92d13a64e6fde74c8161a57a57f0516e7d6a93
IEDL.DBID RSV
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509098300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1001-6058
IngestDate Sat Nov 29 03:34:56 EST 2025
Tue Nov 18 22:40:13 EST 2025
Fri Feb 21 02:30:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords turbulence modeling
model uncertainty
data-driven modeling
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-99ab1a495feb14a759aeafd2d2b92d13a64e6fde74c8161a57a57f0516e7d6a93
PageCount 6
ParticipantIDs crossref_citationtrail_10_1007_s42241_019_0089_y
crossref_primary_10_1007_s42241_019_0089_y
springer_journals_10_1007_s42241_019_0089_y
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationYear 2019
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References WuJXiaoHSunRReynolds-averaged Navier-Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned [J]Journal of Fluid Mechanics2019869553586394409310.1017/jfm.2019.205
WuJXiaoHPatersonE GPhysics-informed machine learning approach for augmenting turbulence models: A comprehensive framework [J]Physical Review Fluids2018307460210.1103/PhysRevFluids.3.074602
ZhangWZhuLLiuYProgresses in the application of machine learning in turbulence modeling [J]Acta Aerodynamica Sinica2019373444454(in Chinese)
Rumsey C. L. NASA Langley turbulence modeling portal [EB/OL]. https://turbmodels.larc.nasa.gov, 2018.
Michelén-Ströfer C., Zhang X., Xiao H. et al. Enforcing boundary conditions on physical fields in Bayesian inversion [J]. 2019 (Submitted).
MoinPKimJTackling turbulence with supercomputers [J]Scientific American19972761465210.1038/scientificamerican0197-62
LingJKurzawskiATempletonJReynolds averaged turbulence modelling using deep neural networks with embedded invariance [J]Journal of Fluid Mechanics2016807155166356930810.1017/jfm.2016.615
Xiao H., Wu J., Laizet S. et al. Flow over periodic hills of parameterized geometries: Example code and dataset for data-driven turbulence modeling [EB/OL]. https://github.com/xiaoh/para-database-for-PIML, 2019.
WangJHuangJDuanLPrediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning [J]Theoretical and Computational Fluid Dynamics2019331119392873610.1007/s00162-018-0480-2
XiaoHWuJWangJQuantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes equations: A data-driven, physics-based, Bayesian approach [J]Journal of Computational Physics2016324115136354033810.1016/j.jcp.2016.07.038
Oliver T., Moser R. Uncertainty quantification for RANS turbulence model predictions [C]. APS Division of Fluid Dynamics Meeting, Minneapolis, MN, USA, 2009.
Mahaffy J., Chung B., Song C. et al. Best practice guidelines for the use of CFD in nuclear reactor safety applications [R]. Technical Report, Organisation for Economic Cooperation and Development, 2007.
OliverT AMoserR DBayesian uncertainty quantification applied to RANS turbulence models [J]Journal of Physics: Conference Series2011318042032
WeatherittJSandbergR DThe development of algebraic stress models using a novel evolutionary algorithm [J]International Journal of Heat and Fluid Flow20176829831810.1016/j.ijheatfluidflow.2017.09.017
Xiao H., Wu J., Laizet S. et al. Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations [J]. Fluid Dynamics, 2019 (Submitted).
LingJTempletonJEvaluation of machine learning algorithms for prediction of regions of high Reynolds-averaged Navier-Stokes uncertainty [J]Physics of Fluids201527808510310.1063/1.4927765
XiaoHCinnellaPQuantification of model uncertainty in RANS simulations: A review [J]Progress in Aerospace Sciences201910813110.1016/j.paerosci.2018.10.001
Xiao H., Wu J. L., Laizet S. et al. Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations [J]. Computers and Fluids, 2019, Preprint arxiv: 1910.01264.
Emory M., Pecnik R., Iaccarino G. Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions [C]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 2011, AIAA paper 2011-479.
Kroll N., Rossow C., Schwamborn D. et al. MEGAFLOW: A numerical flow simulation tool for transport aircraft design [C]. ICAS Congress, Braunschweig, Germany, 2002, 1–105.
WangJWuJ LXiaoHPhysics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data [J]Physical Review Fluids20172303460310.1103/PhysRevFluids.2.034603
BreuerMPellerNRappCFlow over periodic hills: Numerical and experimental study in a wide range of Reynolds numbers [J]Computers and Fluids200938243345710.1016/j.compfluid.2008.05.002
Tracey B., Duraisamy K., Alonso J. J. A machine learning strategy to assist turbulence model development [C]. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA, 2015, AIAA paper 2015-1287.
ParishE JDuraisamyKA paradigm for data-driven predictive modeling using field inversion and machine learning [J]Journal of Computational Physics2016305758774342960510.1016/j.jcp.2015.11.012
LaunderBSharmaBApplication of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc [J]Letters in Heat and Mass Transfer19741213113710.1016/0094-4548(74)90150-7
Zhang X., Michelen-Ströfer C., Xiao H. Regularization of ensemble kalman methods for inverse problems [J]. 2019 (Submitted).
DuraisamyKIaccarinoGXiaoHTurbulence modeling in the age of data [J]Annual Review of Fluid Mechanics201951357377396562310.1146/annurev-fluid-010518-040547
ZhuLZhangWKouJMachine learning methods for turbulence modeling in subsonic flows around airfoils [J]Physics of Fluids201931101510510.1063/1.5061693
MenterF RTwo-equation eddy-viscosity turbulence models for engineering applications [J]AIAA Journal19943281598160510.2514/3.12149
WuJSunRLaizetSRepresentation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling [J]Computer Methods in Applied Mechanics and Engineering2019346707726391299110.1016/j.cma.2018.09.010
JohnsonF TTinocoE NYuN JThirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle [J]Computers and Fluids200534101115115110.1016/j.compfluid.2004.06.005
ZhangZSongX DYeS RApplication of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data [J]Journal of Hydrodynamics2019311586510.1007/s42241-018-0156-9
EmoryMLarssonJIaccarinoGModeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures [J]Physics of Fluids2013251111082210.1063/1.4824659
SinghA PMedidaSDuraisamyKMachine learning-augmented predictive modeling of turbulent separated flows over airfoils [J]AIAA Journal20175572215222710.2514/1.J055595
SpalartP RPhilosophies and fallacies in turbulence modeling [J]Progress in Aerospace Sciences20157411510.1016/j.paerosci.2014.12.004
SpalartPShurMOn the sensitization of turbulence models to rotation and curvature [J]Aerospace Science and Technology19971529730210.1016/S1270-9638(97)90051-1
WuJWangJXiaoHA priori assessment of prediction confidence for data-driven turbulence modeling [J]Flow, Turbulence and Combustion2017991254610.1007/s10494-017-9807-0
IAEA. Use of computational fluid dynamics codes for safety analysis of nuclear reac- tor systems [R]. Technical Report IAEA-TECDOC-1379, Pisa, Italy: International Atomic Energy Agency, 2002.
WeatherittJSandbergRA novel evolutionary algorithm applied to algebraic modifications of the RANS stressstrain relationship [J]Journal of Computational Physics20163252237354683410.1016/j.jcp.2016.08.015
WuJMichelen-StröferCXiaoHPhysics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows [J]Computers and Fluids2019193104292401107010.1016/j.compfluid.2019.104292
SpalartP RAllmarasS RA one equation turbulence model for aerodynamic flows [J]Recherche Aerospatiale199411521
M Breuer (89_CR33) 2009; 38
P R Spalart (89_CR15) 2015; 74
J Wu (89_CR29) 2017; 99
L Zhu (89_CR19) 2019; 31
J Wu (89_CR37) 2019; 193
F T Johnson (89_CR5) 2005; 34
M Emory (89_CR8) 2013; 25
89_CR41
J Wu (89_CR24) 2018; 3
W Zhang (89_CR30) 2019; 37
A P Singh (89_CR16) 2017; 55
T A Oliver (89_CR9) 2011; 318
J Ling (89_CR20) 2016; 807
F R Menter (89_CR13) 1994; 32
Z Zhang (89_CR21) 2019; 31
P Moin (89_CR4) 1997; 276
P Spalart (89_CR39) 1997; 1
J Weatheritt (89_CR22) 2016; 325
89_CR17
89_CR38
J Wang (89_CR27) 2019; 33
89_CR36
P R Spalart (89_CR14) 1994; 1
E J Parish (89_CR18) 2016; 305
J Wu (89_CR28) 2019; 869
89_CR7
89_CR35
89_CR34
J Ling (89_CR40) 2015; 27
89_CR6
J Wu (89_CR31) 2019; 346
89_CR32
89_CR3
89_CR1
H Xiao (89_CR25) 2016; 324
89_CR2
K Duraisamy (89_CR10) 2019; 51
H Xiao (89_CR11) 2019; 108
J Wang (89_CR26) 2017; 2
B Launder (89_CR12) 1974; 1
J Weatheritt (89_CR23) 2017; 68
References_xml – reference: SpalartPShurMOn the sensitization of turbulence models to rotation and curvature [J]Aerospace Science and Technology19971529730210.1016/S1270-9638(97)90051-1
– reference: WangJHuangJDuanLPrediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning [J]Theoretical and Computational Fluid Dynamics2019331119392873610.1007/s00162-018-0480-2
– reference: WuJXiaoHPatersonE GPhysics-informed machine learning approach for augmenting turbulence models: A comprehensive framework [J]Physical Review Fluids2018307460210.1103/PhysRevFluids.3.074602
– reference: Xiao H., Wu J. L., Laizet S. et al. Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations [J]. Computers and Fluids, 2019, Preprint arxiv: 1910.01264.
– reference: DuraisamyKIaccarinoGXiaoHTurbulence modeling in the age of data [J]Annual Review of Fluid Mechanics201951357377396562310.1146/annurev-fluid-010518-040547
– reference: Zhang X., Michelen-Ströfer C., Xiao H. Regularization of ensemble kalman methods for inverse problems [J]. 2019 (Submitted).
– reference: IAEA. Use of computational fluid dynamics codes for safety analysis of nuclear reac- tor systems [R]. Technical Report IAEA-TECDOC-1379, Pisa, Italy: International Atomic Energy Agency, 2002.
– reference: WeatherittJSandbergR DThe development of algebraic stress models using a novel evolutionary algorithm [J]International Journal of Heat and Fluid Flow20176829831810.1016/j.ijheatfluidflow.2017.09.017
– reference: WuJSunRLaizetSRepresentation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling [J]Computer Methods in Applied Mechanics and Engineering2019346707726391299110.1016/j.cma.2018.09.010
– reference: LingJTempletonJEvaluation of machine learning algorithms for prediction of regions of high Reynolds-averaged Navier-Stokes uncertainty [J]Physics of Fluids201527808510310.1063/1.4927765
– reference: Xiao H., Wu J., Laizet S. et al. Flow over periodic hills of parameterized geometries: Example code and dataset for data-driven turbulence modeling [EB/OL]. https://github.com/xiaoh/para-database-for-PIML, 2019.
– reference: MoinPKimJTackling turbulence with supercomputers [J]Scientific American19972761465210.1038/scientificamerican0197-62
– reference: JohnsonF TTinocoE NYuN JThirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle [J]Computers and Fluids200534101115115110.1016/j.compfluid.2004.06.005
– reference: LingJKurzawskiATempletonJReynolds averaged turbulence modelling using deep neural networks with embedded invariance [J]Journal of Fluid Mechanics2016807155166356930810.1017/jfm.2016.615
– reference: WuJWangJXiaoHA priori assessment of prediction confidence for data-driven turbulence modeling [J]Flow, Turbulence and Combustion2017991254610.1007/s10494-017-9807-0
– reference: XiaoHCinnellaPQuantification of model uncertainty in RANS simulations: A review [J]Progress in Aerospace Sciences201910813110.1016/j.paerosci.2018.10.001
– reference: Tracey B., Duraisamy K., Alonso J. J. A machine learning strategy to assist turbulence model development [C]. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA, 2015, AIAA paper 2015-1287.
– reference: XiaoHWuJWangJQuantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes equations: A data-driven, physics-based, Bayesian approach [J]Journal of Computational Physics2016324115136354033810.1016/j.jcp.2016.07.038
– reference: Xiao H., Wu J., Laizet S. et al. Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations [J]. Fluid Dynamics, 2019 (Submitted).
– reference: Michelén-Ströfer C., Zhang X., Xiao H. et al. Enforcing boundary conditions on physical fields in Bayesian inversion [J]. 2019 (Submitted).
– reference: EmoryMLarssonJIaccarinoGModeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures [J]Physics of Fluids2013251111082210.1063/1.4824659
– reference: SpalartP RPhilosophies and fallacies in turbulence modeling [J]Progress in Aerospace Sciences20157411510.1016/j.paerosci.2014.12.004
– reference: WangJWuJ LXiaoHPhysics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data [J]Physical Review Fluids20172303460310.1103/PhysRevFluids.2.034603
– reference: OliverT AMoserR DBayesian uncertainty quantification applied to RANS turbulence models [J]Journal of Physics: Conference Series2011318042032
– reference: Mahaffy J., Chung B., Song C. et al. Best practice guidelines for the use of CFD in nuclear reactor safety applications [R]. Technical Report, Organisation for Economic Cooperation and Development, 2007.
– reference: SpalartP RAllmarasS RA one equation turbulence model for aerodynamic flows [J]Recherche Aerospatiale199411521
– reference: MenterF RTwo-equation eddy-viscosity turbulence models for engineering applications [J]AIAA Journal19943281598160510.2514/3.12149
– reference: WeatherittJSandbergRA novel evolutionary algorithm applied to algebraic modifications of the RANS stressstrain relationship [J]Journal of Computational Physics20163252237354683410.1016/j.jcp.2016.08.015
– reference: Kroll N., Rossow C., Schwamborn D. et al. MEGAFLOW: A numerical flow simulation tool for transport aircraft design [C]. ICAS Congress, Braunschweig, Germany, 2002, 1–105.
– reference: ZhangZSongX DYeS RApplication of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data [J]Journal of Hydrodynamics2019311586510.1007/s42241-018-0156-9
– reference: Rumsey C. L. NASA Langley turbulence modeling portal [EB/OL]. https://turbmodels.larc.nasa.gov, 2018.
– reference: Emory M., Pecnik R., Iaccarino G. Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions [C]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 2011, AIAA paper 2011-479.
– reference: ParishE JDuraisamyKA paradigm for data-driven predictive modeling using field inversion and machine learning [J]Journal of Computational Physics2016305758774342960510.1016/j.jcp.2015.11.012
– reference: ZhuLZhangWKouJMachine learning methods for turbulence modeling in subsonic flows around airfoils [J]Physics of Fluids201931101510510.1063/1.5061693
– reference: ZhangWZhuLLiuYProgresses in the application of machine learning in turbulence modeling [J]Acta Aerodynamica Sinica2019373444454(in Chinese)
– reference: WuJMichelen-StröferCXiaoHPhysics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows [J]Computers and Fluids2019193104292401107010.1016/j.compfluid.2019.104292
– reference: LaunderBSharmaBApplication of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc [J]Letters in Heat and Mass Transfer19741213113710.1016/0094-4548(74)90150-7
– reference: BreuerMPellerNRappCFlow over periodic hills: Numerical and experimental study in a wide range of Reynolds numbers [J]Computers and Fluids200938243345710.1016/j.compfluid.2008.05.002
– reference: WuJXiaoHSunRReynolds-averaged Navier-Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned [J]Journal of Fluid Mechanics2019869553586394409310.1017/jfm.2019.205
– reference: Oliver T., Moser R. Uncertainty quantification for RANS turbulence model predictions [C]. APS Division of Fluid Dynamics Meeting, Minneapolis, MN, USA, 2009.
– reference: SinghA PMedidaSDuraisamyKMachine learning-augmented predictive modeling of turbulent separated flows over airfoils [J]AIAA Journal20175572215222710.2514/1.J055595
– volume: 68
  start-page: 298
  year: 2017
  ident: 89_CR23
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.09.017
– volume: 324
  start-page: 115
  year: 2016
  ident: 89_CR25
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2016.07.038
– volume: 346
  start-page: 707
  year: 2019
  ident: 89_CR31
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2018.09.010
– volume: 33
  start-page: 1
  issue: 1
  year: 2019
  ident: 89_CR27
  publication-title: Theoretical and Computational Fluid Dynamics
  doi: 10.1007/s00162-018-0480-2
– volume: 276
  start-page: 46
  issue: 1
  year: 1997
  ident: 89_CR4
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0197-62
– volume: 31
  start-page: 58
  issue: 1
  year: 2019
  ident: 89_CR21
  publication-title: Journal of Hydrodynamics
  doi: 10.1007/s42241-018-0156-9
– volume: 318
  start-page: 042032
  year: 2011
  ident: 89_CR9
  publication-title: Journal of Physics: Conference Series
– volume: 31
  start-page: 015105
  issue: 1
  year: 2019
  ident: 89_CR19
  publication-title: Physics of Fluids
  doi: 10.1063/1.5061693
– volume: 51
  start-page: 357
  year: 2019
  ident: 89_CR10
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev-fluid-010518-040547
– volume: 38
  start-page: 433
  issue: 2
  year: 2009
  ident: 89_CR33
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2008.05.002
– volume: 27
  start-page: 085103
  issue: 8
  year: 2015
  ident: 89_CR40
  publication-title: Physics of Fluids
  doi: 10.1063/1.4927765
– ident: 89_CR6
– ident: 89_CR38
  doi: 10.1016/j.cma.2020.113097
– volume: 1
  start-page: 131
  issue: 2
  year: 1974
  ident: 89_CR12
  publication-title: Letters in Heat and Mass Transfer
  doi: 10.1016/0094-4548(74)90150-7
– volume: 2
  start-page: 034603
  issue: 3
  year: 2017
  ident: 89_CR26
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.2.034603
– volume: 1
  start-page: 5
  issue: 1
  year: 1994
  ident: 89_CR14
  publication-title: Recherche Aerospatiale
– volume: 108
  start-page: 1
  year: 2019
  ident: 89_CR11
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2018.10.001
– ident: 89_CR2
– volume: 1
  start-page: 297
  issue: 5
  year: 1997
  ident: 89_CR39
  publication-title: Aerospace Science and Technology
  doi: 10.1016/S1270-9638(97)90051-1
– volume: 3
  start-page: 074602
  year: 2018
  ident: 89_CR24
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.3.074602
– volume: 25
  start-page: 110822
  issue: 11
  year: 2013
  ident: 89_CR8
  publication-title: Physics of Fluids
  doi: 10.1063/1.4824659
– volume: 807
  start-page: 155
  year: 2016
  ident: 89_CR20
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.615
– ident: 89_CR35
– ident: 89_CR32
  doi: 10.1016/j.compfluid.2020.104431
– ident: 89_CR17
  doi: 10.2514/6.2015-1287
– volume: 37
  start-page: 444
  issue: 3
  year: 2019
  ident: 89_CR30
  publication-title: Acta Aerodynamica Sinica
– volume: 193
  start-page: 104292
  year: 2019
  ident: 89_CR37
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2019.104292
– volume: 32
  start-page: 1598
  issue: 8
  year: 1994
  ident: 89_CR13
  publication-title: AIAA Journal
  doi: 10.2514/3.12149
– volume: 869
  start-page: 553
  year: 2019
  ident: 89_CR28
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2019.205
– ident: 89_CR36
  doi: 10.1016/j.jcp.2020.109517
– volume: 34
  start-page: 1115
  issue: 10
  year: 2005
  ident: 89_CR5
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2004.06.005
– volume: 99
  start-page: 25
  issue: 1
  year: 2017
  ident: 89_CR29
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1007/s10494-017-9807-0
– ident: 89_CR3
– volume: 305
  start-page: 758
  year: 2016
  ident: 89_CR18
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2015.11.012
– volume: 55
  start-page: 2215
  issue: 7
  year: 2017
  ident: 89_CR16
  publication-title: AIAA Journal
  doi: 10.2514/1.J055595
– volume: 325
  start-page: 22
  year: 2016
  ident: 89_CR22
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2016.08.015
– volume: 74
  start-page: 1
  year: 2015
  ident: 89_CR15
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2014.12.004
– ident: 89_CR1
– ident: 89_CR7
  doi: 10.2514/6.2011-479
– ident: 89_CR41
  doi: 10.1016/j.compfluid.2020.104431
– ident: 89_CR34
SSID ssj0036904
ssib060475366
Score 2.3327265
Snippet In view of the long stagnation in traditional turbulence modeling, researchers have attempted using machine learning to augment turbulence models. This paper...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1153
SubjectTerms Engineering
Engineering Fluid Dynamics
Hydrology/Water Resources
Numerical and Computational Physics
Simulation
Special Column on 30th NCHD
Title Recent progress in augmenting turbulence models with physics-informed machine learning
URI https://link.springer.com/article/10.1007/s42241-019-0089-y
Volume 31
WOSCitedRecordID wos000509098300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: RSV
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7G-yMGTEmh3001yFLF4kCI-Sm9LsklKQbfSbYX-eyfZ3WJBBYU9zi7LTGa-mcwL4EIag3GH5TSLnKUYfzGqmHDU8KSlTcuJJAtDXO95rycGA_lQ9XEXdbV7nZIMlnrR7MY82mDoKynilqTzVVhDtBN-X8PjU782vzGGeyGV7GuFfM6vTmV-94llMFrOhAaA6W7_69d2YKvyJ8l1eQB2YcXme7D5ZcrgPvTRNURoIaEUCw0bGeVEzYahTigfEsQcPQutRySsxSmIv5sl5ZVHQcvJqtaQt1B2aUm1Z2J4AC_d2-ebO1qtU0A5CDGlUirdVhgQObTPTPGOVFY5E5lIy8i0Y5UwmzhjOcsE-oGqw_FxqLSJ5SZRMj6ERj7O7RGQuGOZQ1WOjPaJUy2kUDyziPZKC8WiJrRqvqZZNWvcr7x4TRdTkgPLUmRZ6lmWzptwuXjlvRy08RvxVS2ItNK54mfq4z9Rn8BG5CUZSlZOoTGdzOwZrGcf01ExOQ9n7RMBhtEY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-L8zINPSmDrsiZ5FHEoziE6x95K2iRjoFXWTdh_7yVthwMVFPqYlnKX3O8ud_c7gDOpNcYdhtMksIZi_MWoYsJSzcNarGtWhIkncW3zTkf0-_Kh6OPOymr3MiXpLfWs2Y05tMHQV1LELUmni7DEELAcYf7jU680vw0M93wq2dUKuZxfmcr87hPzYDSfCfUA09r4169twnrhT5LLfANswYJJt2HtC8vgDvTQNURoIb4UCw0bGaZETQa-TigdEMSceOJbj4gfi5MRdzdL8iuPjObMqkaTV192aUgxZ2KwC8-t6-7VDS3GKaAehBhTKVVcVxgQWbTPTPGmVEZZHeggloGuN1TITGi14SwR6AeqJsfH4qENDdehko09qKRvqdkH0mgaZvEoBzp2idNYSKF4YhDtVSwUC6pQK-UaJQXXuBt58RLNWJK9yCIUWeREFk2rcD575T0n2vht8UWpiKg4c9nPqw_-tPoUVm669-2ofdu5O4TVwGnVl68cQWU8mphjWE4-xsNsdOL33SfYWtP8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-L8zINPStjWZW3yKOpQHGOgjr2VtEnGQOtYO2H_vZe0HQ5UEKGP1xAuyX3kfvkdwIVQCvMOHdDYM5pi_sWoZNxQFfj1SNUN92NH4toJul0-GIhe0ec0LdHuZUkyf9NgWZqSrDZWpjZ_-Mas58E0WFD0YYLOlmGFWRy9Tdef-qUpbmLq58rKFjdk639lWfO7IRYd02JV1Dmb9ta_p7kNm0WcSa7zjbEDSzrZhY0v7IN70MeQEcciDqKFBo-MEiKnQ4cfSoYEfVE0dU-SiGuXkxJ7Z0vyq5CU5oyrWpE3B8fUpOg_MdyHl_bd8809Ldos4PpwnlEhZNSQmCgZtNtMBi0htTTKU14kPNVoSp9p3ygdsJhjfChbAX4GD7OvA-VL0TyASvKe6EMgzZZmBo-4pyJbUI244DKINUYBMuKSeVWolzoO44KD3LbCeA3n7MlOZSGqLLQqC2dVuJz_Ms4JOH4TvioXJSzOYvqz9NGfpM9hrXfbDjsP3cdjWPfsojpUywlUsslUn8Jq_JGN0smZ24Kfq2vc4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+augmenting+turbulence+models+with+physics-informed+machine+learning&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Zhang%2C+Xinlei&rft.au=Wu%2C+Jinlong&rft.au=Coutier-Delgosha%2C+Olivier&rft.au=Xiao%2C+Heng&rft.date=2019-12-01&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=31&rft.issue=6&rft.spage=1153&rft.epage=1158&rft_id=info:doi/10.1007%2Fs42241-019-0089-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42241_019_0089_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-6058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-6058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-6058&client=summon