Pareto Solutions of Polyhedral-valued Vector Optimization Problems in Banach Spaces

In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Set-Valued and Variational Analysis Ročník 17; číslo 4; s. 389 - 408
Hlavný autor: Zheng, Xi Yin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.12.2009
Predmet:
ISSN:1877-0533, 1572-932X, 1877-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set and Pareto optimal value set of (SVOP). In particular, we improve and generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems in Euclidean spaces.
ISSN:1877-0533
1572-932X
1877-0541
DOI:10.1007/s11228-009-0120-5