Pareto Solutions of Polyhedral-valued Vector Optimization Problems in Banach Spaces

In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto op...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-Valued and Variational Analysis Ročník 17; číslo 4; s. 389 - 408
Hlavní autor: Zheng, Xi Yin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2009
Témata:
ISSN:1877-0533, 1572-932X, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set and Pareto optimal value set of (SVOP). In particular, we improve and generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems in Euclidean spaces.
ISSN:1877-0533
1572-932X
1877-0541
DOI:10.1007/s11228-009-0120-5