Pareto Solutions of Polyhedral-valued Vector Optimization Problems in Banach Spaces
In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto op...
Uloženo v:
| Vydáno v: | Set-Valued and Variational Analysis Ročník 17; číslo 4; s. 389 - 408 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.12.2009
|
| Témata: | |
| ISSN: | 1877-0533, 1572-932X, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set and Pareto optimal value set of (SVOP). In particular, we improve and generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems in Euclidean spaces. |
|---|---|
| ISSN: | 1877-0533 1572-932X 1877-0541 |
| DOI: | 10.1007/s11228-009-0120-5 |