Guest Editorial: Deep Learning For Genomics

The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics data is being produced relative to DNA and RNA sequences and (and also) abundance at individual subject or even at individual cell level. In p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 1; pp. 95 - 96
Main Authors: Di Camillo, Barbara, Nicosia, Giuseppe
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5963, 1557-9964
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics data is being produced relative to DNA and RNA sequences and (and also) abundance at individual subject or even at individual cell level. In particular, the genomics field is rich in data thanks to the rapid reduction in the cost of genetic sequencing. On the other hand, deep learning is transforming the field of many machine learning applications, such as computer vision and natural language processing, by effectively leveraging on big amount of data and is now emerging as a promising approach for many genomics modeling tasks. The scope of this special section is to discuss novel algorithms, methodologies and applications of deep learning to genomic studies with focus on their potentialities and challenges.
AbstractList The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics data is being produced relative to DNA and RNA sequences and (and also) abundance at individual subject or even at individual cell level. In particular, the genomics field is rich in data thanks to the rapid reduction in the cost of genetic sequencing. On the other hand, deep learning is transforming the field of many machine learning applications, such as computer vision and natural language processing, by effectively leveraging on big amount of data and is now emerging as a promising approach for many genomics modeling tasks. The scope of this special section is to discuss novel algorithms, methodologies and applications of deep learning to genomic studies with focus on their potentialities and challenges.
Author Nicosia, Giuseppe
Di Camillo, Barbara
Author_xml – sequence: 1
  givenname: Barbara
  orcidid: 0000-0001-8415-4688
  surname: Di Camillo
  fullname: Di Camillo, Barbara
  email: barbara.dicamillo@unipd.it
  organization: Department of Information Engineering, Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
– sequence: 2
  givenname: Giuseppe
  orcidid: 0000-0002-0650-3157
  surname: Nicosia
  fullname: Nicosia, Giuseppe
  email: gn263@cam.ac.uk
  organization: Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
BookMark eNo9kE1PAjEQhhuDiYD-AONlE49mcaafW2-CgCYkXvDclO5glsAWWzj472UD8TRzeN53Js-A9drYEmP3CCNEsM_LyXg84sBxJKACsPKK9VEpU1qrZa_bpSqV1eKGDXLeAHBpQfbZ0_xI-VBM6-YQU-O3L8Ub0b5YkE9t034Xs5iKObVx14R8y67Xfpvp7jKH7Gs2XU7ey8Xn_GPyuigDr6pDaayutZayRh4ECr2WJvjKWqU11CsElAIsGDQ1DwheB0Goq5XxhipCNGLIHs-9-xR_uvfcJh5TezrpuOZKaKPQnig8UyHFnBOt3T41O59-HYLrnLjOieucuIuTU-bhnGmI6J-3BrgBI_4As4VbPw
CODEN ITCBCY
Cites_doi 10.1109/TCBB.2021.3060340
10.1109/TCBB.2021.3061300
10.1109/TCBB.2020.3035021
10.1109/TCBB.2021.3058941
10.1109/TCBB.2020.3042309
10.1109/TCBB.2021.3060430
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1109/TCBB.2021.3080094
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 96
ExternalDocumentID 10_1109_TCBB_2021_3080094
9702707
Genre opinion
Commentary
Editorial
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c288t-796d6644d12c3136f47ca8995660db10143090717d2c10a6c3e168b7a7e8e1173
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752015800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
IngestDate Sun Jun 29 12:23:57 EDT 2025
Sat Nov 29 01:52:05 EST 2025
Wed Aug 27 03:00:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-796d6644d12c3136f47ca8995660db10143090717d2c10a6c3e168b7a7e8e1173
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ORCID 0000-0001-8415-4688
0000-0002-0650-3157
OpenAccessLink https://ieeexplore.ieee.org/ielx7/8857/9702518/09702707.pdf
PQID 2625367519
PQPubID 85499
PageCount 2
ParticipantIDs ieee_primary_9702707
proquest_journals_2625367519
crossref_primary_10_1109_TCBB_2021_3080094
PublicationCentury 2000
PublicationDate 2022-Jan.-Feb.-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-Feb.-1
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref2
ref1
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/TCBB.2021.3060340
– ident: ref6
  doi: 10.1109/TCBB.2021.3061300
– ident: ref1
  doi: 10.1109/TCBB.2020.3035021
– ident: ref2
  doi: 10.1109/TCBB.2021.3058941
– ident: ref3
  doi: 10.1109/TCBB.2020.3042309
– ident: ref5
  doi: 10.1109/TCBB.2021.3060430
SSID ssj0024904
Score 2.2803516
SecondaryResourceType review_article
Snippet The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 95
SubjectTerms Algorithms
Bioinformatics
Computer vision
Deep learning
Deoxyribonucleic acid
DNA
Gene sequencing
Genomics
Learning algorithms
Machine learning
Natural language processing
Nucleotide sequence
Protein engineering
RNA
Special issues and sections
Title Guest Editorial: Deep Learning For Genomics
URI https://ieeexplore.ieee.org/document/9702707
https://www.proquest.com/docview/2625367519
Volume 19
WOSCitedRecordID wos000752015800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qUfDiVxWrVXLwJKbNbpL98Ka11YMUDxV6C5vdjRSkLf0Q_PfubNKK6MVbDlkS3iSZeTt58wCuClnYNDIKzV2wzZimoRCahS4TKa4LnQrjhcLPfDAQo5F8qcHNRgtjrfU_n9k2HvpevpnqFW6VdSR3JAql41ucs1Kr9T1XT3qrQKwIwtQ9VVUHk0SyM-ze3zsmSEk7xvpIJj9ykDdV-fUl9umlv_-_GzuAvaqMDO7KuB9CzU6OYKc0lvxsgIu8u0bQM2OcAaLeb4MHa2dBNUz1LehP58Gj9YrkxTG89nvD7lNY2SKEmgqxDLlkhrkyxhCqYxKzIuFaCVSossjk6L0bRxJpmqGaRIrp2BImcq64FZYQHp9AfTKd2FMIaKLQripPYiUSnRQ5TQuV85wStzYtSBOu10Bls3L6ReZZQyQzRDVDVLMK1SY0EJnNiRUoTWitoc2q92ORUUe7YsdViDz7e9U57FIUGvjNjhbUl_OVvYBt_bEcL-aXPvRf8mmoeg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1VBQQLXwVRKJCBCZE2dj5ss9HSUkSpGIrULXIcByGhFvUDiX-Pz3WLECxsGWIlenZy93x-9wAuClHoOMglmrtgmTGOfc5V4ptIJJkqVMxzKxTusX6fD4fiqQRXKy2M1toePtN1vLS1_Hys5rhV1hDMkCiUjq-hc5ZTa3131hPWLBBzAj8268rVMEkgGoNWs2m4ICX1EDMkEf2IQtZW5de_2AaYzs7_Xm0Xtl0i6d0sZn4PSnq0DxsLa8nPCpi5N8_w2vkrdgGRb9ferdbvnmun-uJ1xhPvTltN8vQAnjvtQavrO2MEX1HOZz4TSZ6YRCYnVIUkTIqIKclRo5oEeYbuu2EgkKjlVJFAJirUJOEZk0xzTQgLD6E8Go_0EXg0kmhYlUWh5JGKiozGhcxYRokZGxekCpdLoNL3Rf-L1PKGQKSIaoqopg7VKlQQmdWNDpQq1JbQpu4LmabUEK_QsBUijv8edQ6b3cFjL-3d9x9OYIui7MBufdSgPJvM9Smsq4_Z63RyZpfBF-_cq8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guest+Editorial%3A+Deep+Learning+For+Genomics&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Barbara+Di+Camillo&rft.au=Nicosia%2C+Giuseppe&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=19&rft.issue=1&rft.spage=95&rft_id=info:doi/10.1109%2FTCBB.2021.3080094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon