Guest Editorial: Deep Learning For Genomics
The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics data is being produced relative to DNA and RNA sequences and (and also) abundance at individual subject or even at individual cell level. In p...
Uložené v:
| Vydané v: | IEEE/ACM transactions on computational biology and bioinformatics Ročník 19; číslo 1; s. 95 - 96 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1545-5963, 1557-9964 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics data is being produced relative to DNA and RNA sequences and (and also) abundance at individual subject or even at individual cell level. In particular, the genomics field is rich in data thanks to the rapid reduction in the cost of genetic sequencing. On the other hand, deep learning is transforming the field of many machine learning applications, such as computer vision and natural language processing, by effectively leveraging on big amount of data and is now emerging as a promising approach for many genomics modeling tasks. The scope of this special section is to discuss novel algorithms, methodologies and applications of deep learning to genomic studies with focus on their potentialities and challenges. |
|---|---|
| AbstractList | The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics data is being produced relative to DNA and RNA sequences and (and also) abundance at individual subject or even at individual cell level. In particular, the genomics field is rich in data thanks to the rapid reduction in the cost of genetic sequencing. On the other hand, deep learning is transforming the field of many machine learning applications, such as computer vision and natural language processing, by effectively leveraging on big amount of data and is now emerging as a promising approach for many genomics modeling tasks. The scope of this special section is to discuss novel algorithms, methodologies and applications of deep learning to genomic studies with focus on their potentialities and challenges. |
| Author | Nicosia, Giuseppe Di Camillo, Barbara |
| Author_xml | – sequence: 1 givenname: Barbara orcidid: 0000-0001-8415-4688 surname: Di Camillo fullname: Di Camillo, Barbara email: barbara.dicamillo@unipd.it organization: Department of Information Engineering, Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy – sequence: 2 givenname: Giuseppe orcidid: 0000-0002-0650-3157 surname: Nicosia fullname: Nicosia, Giuseppe email: gn263@cam.ac.uk organization: Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K |
| BookMark | eNo9kE1PAjEQhhuDiYD-AONlE49mcaafW2-CgCYkXvDclO5glsAWWzj472UD8TRzeN53Js-A9drYEmP3CCNEsM_LyXg84sBxJKACsPKK9VEpU1qrZa_bpSqV1eKGDXLeAHBpQfbZ0_xI-VBM6-YQU-O3L8Ub0b5YkE9t034Xs5iKObVx14R8y67Xfpvp7jKH7Gs2XU7ey8Xn_GPyuigDr6pDaayutZayRh4ECr2WJvjKWqU11CsElAIsGDQ1DwheB0Goq5XxhipCNGLIHs-9-xR_uvfcJh5TezrpuOZKaKPQnig8UyHFnBOt3T41O59-HYLrnLjOieucuIuTU-bhnGmI6J-3BrgBI_4As4VbPw |
| CODEN | ITCBCY |
| Cites_doi | 10.1109/TCBB.2021.3060340 10.1109/TCBB.2021.3061300 10.1109/TCBB.2020.3035021 10.1109/TCBB.2021.3058941 10.1109/TCBB.2020.3042309 10.1109/TCBB.2021.3060430 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1109/TCBB.2021.3080094 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 96 |
| ExternalDocumentID | 10_1109_TCBB_2021_3080094 9702707 |
| Genre | opinion Commentary Editorial |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c288t-796d6644d12c3136f47ca8995660db10143090717d2c10a6c3e168b7a7e8e1173 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752015800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 |
| IngestDate | Sun Jun 29 12:23:57 EDT 2025 Sat Nov 29 01:52:05 EST 2025 Wed Aug 27 03:00:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-796d6644d12c3136f47ca8995660db10143090717d2c10a6c3e168b7a7e8e1173 |
| Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 |
| ORCID | 0000-0001-8415-4688 0000-0002-0650-3157 |
| OpenAccessLink | https://ieeexplore.ieee.org/ielx7/8857/9702518/09702707.pdf |
| PQID | 2625367519 |
| PQPubID | 85499 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_9702707 proquest_journals_2625367519 crossref_primary_10_1109_TCBB_2021_3080094 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-Feb.-1 2022-1-1 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-Feb.-1 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref2 ref1 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref4 doi: 10.1109/TCBB.2021.3060340 – ident: ref6 doi: 10.1109/TCBB.2021.3061300 – ident: ref1 doi: 10.1109/TCBB.2020.3035021 – ident: ref2 doi: 10.1109/TCBB.2021.3058941 – ident: ref3 doi: 10.1109/TCBB.2020.3042309 – ident: ref5 doi: 10.1109/TCBB.2021.3060430 |
| SSID | ssj0024904 |
| Score | 2.2803516 |
| SecondaryResourceType | review_article |
| Snippet | The six papers in this special section focus on deep learning for genomics. Thanks to the development of high-throughput technologies, a huge amount of omics... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 95 |
| SubjectTerms | Algorithms Bioinformatics Computer vision Deep learning Deoxyribonucleic acid DNA Gene sequencing Genomics Learning algorithms Machine learning Natural language processing Nucleotide sequence Protein engineering RNA Special issues and sections |
| Title | Guest Editorial: Deep Learning For Genomics |
| URI | https://ieeexplore.ieee.org/document/9702707 https://www.proquest.com/docview/2625367519 |
| Volume | 19 |
| WOSCitedRecordID | wos000752015800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVKBRILr4IoFJSBCZHWj8QPNlpamCqGInWLHPsGVUJt1QcSf4_tpEUIFrYMiRydm_jeY_vcg9BNzouE6JTGACqJE8tZ7PIMi6lOicgLgQttgtmEGA7leKxeauhuq4UBgHD4DNr-Muzl25lZ-6WyjhKORHnp-I4QvNRqfffVU8Eq0FcEceq-qmoHk2DVGfW6XccEKWkzXx-p5EcOCqYqv2bikF4Gh_97sSN0UJWR0UMZ92NUg-kJ2iuNJT8byEXejRH17cT3ANHv99EjwDyqmqm-RYPZInqCoEhenqLXQX_Ue44rW4TYUClXsVDcclfGWEINI8yBLYyWXqHKsc299y7DytM0Sw3BmhsGhMtcaAESCBHsDNWnsymco4hyk0DKJUtkkuSApcHEUhBegMuKVDfR7QaobF52v8gCa8Aq86hmHtWsQrWJGh6Z7Y0VKE3U2kCbVf_HMqOOdjHHVYi6-PupS7RPvdAgLHa0UH21WMMV2jUfq8lycR1C_wXotqeJ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4hqNGLv9CIou7gyThY260_vAmCGJF4wITbsnUPQ2KA8MPE_962DIzRi7ce1mz52u69r-33PoCrlA9CkkTUR1ShH2ac-SbOMJ8mERHpQASDRDuzCdHtyn5fvRTgZq2FQUR3-QyrtunO8rOxXtitspoShkRZ6fiGdc7K1VrflfWUMwu0OYEfmXmVn2GSQNV6jXrdcEFKqsxmSCr8EYWcrcqvf7ELMK29_33aPuzmiaR3txz5Ayjg6BC2ltaSnyUwY2_e4TWzoa0CkrzfeveIEy8vp_rmtcZT7wGdJnl2BK-tZq_R9nNjBF9TKee-UDzjJpHJCNWMMAO30Im0GlUeZKl132WBskQto5oECdcMCZepSARKJESwYyiOxiM8AY9yHWLEJQtlGKYYSB2QjKKwElw2iJIyXK-AiifL-hex4w2Bii2qsUU1zlEtQ8kis34wB6UMlRW0cb5CZjE1xIsZtkLU6d-9LmG73XvuxJ3H7tMZ7FArO3BbHxUozqcLPIdN_TEfzqYXbhp8AdpfqtI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guest+Editorial%3A+Deep+Learning+For+Genomics&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Barbara+Di+Camillo&rft.au=Nicosia%2C+Giuseppe&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=19&rft.issue=1&rft.spage=95&rft_id=info:doi/10.1109%2FTCBB.2021.3080094&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |