An Implicit Function Theorem for One-sided Lipschitz Mappings

Implicit function theorems are derived for nonlinear set valued equations that satisfy a relaxed one-sided Lipschitz condition. We discuss a local and a global version and study in detail the continuity properties of the implicit set-valued function. Applications are provided to the Crank–Nicolson s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 19; číslo 3; s. 343 - 359
Hlavní autoři: Beyn, Wolf-Jürgen, Rieger, Janosch
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.09.2011
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Implicit function theorems are derived for nonlinear set valued equations that satisfy a relaxed one-sided Lipschitz condition. We discuss a local and a global version and study in detail the continuity properties of the implicit set-valued function. Applications are provided to the Crank–Nicolson scheme for differential inclusions and to the analysis of differential algebraic inclusions.
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-010-0162-8