Absolute convergence of double Walsh–Fourier series and related results

We consider the double Walsh orthonormal system on the unit square , where { w m ( x )} is the ordinary Walsh system on the unit interval in the Paley enumeration. Our aim is to give sufficient conditions for the absolute convergence of the double Walsh–Fourier series of a function for some 1< p...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Hungarica Vol. 131; no. 1-2; pp. 122 - 137
Main Authors: Móricz, Ferenc, Veres, Antal
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.04.2011
Subjects:
ISSN:0236-5294, 1588-2632
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the double Walsh orthonormal system on the unit square , where { w m ( x )} is the ordinary Walsh system on the unit interval in the Paley enumeration. Our aim is to give sufficient conditions for the absolute convergence of the double Walsh–Fourier series of a function for some 1< p ≦2. More generally, we give best possible sufficient conditions for the finiteness of the double series where { a mn } is a given double sequence of nonnegative real numbers satisfying a mild assumption and 0< r <2. These sufficient conditions are formulated in terms of (either global or local) dyadic moduli of continuity of  f .
AbstractList We consider the double Walsh orthonormal system on the unit square , where { w m ( x )} is the ordinary Walsh system on the unit interval in the Paley enumeration. Our aim is to give sufficient conditions for the absolute convergence of the double Walsh–Fourier series of a function for some 1< p ≦2. More generally, we give best possible sufficient conditions for the finiteness of the double series where { a mn } is a given double sequence of nonnegative real numbers satisfying a mild assumption and 0< r <2. These sufficient conditions are formulated in terms of (either global or local) dyadic moduli of continuity of  f .
Author Veres, Antal
Móricz, Ferenc
Author_xml – sequence: 1
  givenname: Ferenc
  surname: Móricz
  fullname: Móricz, Ferenc
  email: moricz@math.u-szeged.hu
  organization: Bolyai Institute, University of Szeged
– sequence: 2
  givenname: Antal
  surname: Veres
  fullname: Veres, Antal
  organization: Bolyai Institute, University of Szeged
BookMark eNp9kLFOwzAQQC1UJNrCB7DlBwxnx06csaooVKrEAmK0HOdcUoUY2QkSnfgH_pAvwVWZGDq95d6d7s3IpPc9EnLN4IYBlLeRgSgFBQYUoJB0f0amTCpFeZHzCZkCzwsqeSUuyCzGHQDIHMSUrBd19N04YGZ9_4Fhi73FzLus8WPdYfZiuvj68_W98mNoMWQRE2Jm-iYL2JkBD4xjN8RLcu7SMF79cU6eV3dPywe6ebxfLxcbarlSAy1cZWpu86IpZWkbJUWDzDiHeW2UaFTBamaRF9JKdBUX4KTIk1E7prCuIJ8Tdtxrg48xoNPvoX0z4VMz0IcW-thCpxb60ELvk1P-c2w7mKH1_RBM2500-dGM6Uq_xaB3qUSfHjwh_QKMGniV
CitedBy_id crossref_primary_10_1515_gmj_2022_2151
crossref_primary_10_1007_s10476_012_0202_8
crossref_primary_10_1007_s40065_016_0145_1
crossref_primary_10_1080_10652469_2025_2531409
crossref_primary_10_4213_mzm11965
Cites_doi 10.1090/S0002-9947-1933-1501718-2
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2011
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2011
DBID AAYXX
CITATION
DOI 10.1007/s10474-010-0065-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1588-2632
EndPage 137
ExternalDocumentID 10_1007_s10474_010_0065_z
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RKA
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XOL
Y6R
YLTOR
YYP
Z45
ZCG
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
ID FETCH-LOGICAL-c288t-6f9ab2c36d757cd854de1affe3ba84d861b1ce265c5ef9240f543ab2bf18eb903
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288250300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0236-5294
IngestDate Tue Nov 18 21:55:29 EST 2025
Sat Nov 29 01:50:06 EST 2025
Fri Feb 21 02:26:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 42C10
dyadic modulus of continuity
double Walsh–Fourier series
26A16
dyadic
functions of
modulus of continuity
26A15
bounded fluctuation
absolute convergence
dyadic Lipschitz classes of functions in two variables
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-6f9ab2c36d757cd854de1affe3ba84d861b1ce265c5ef9240f543ab2bf18eb903
PageCount 16
ParticipantIDs crossref_primary_10_1007_s10474_010_0065_z
crossref_citationtrail_10_1007_s10474_010_0065_z
springer_journals_10_1007_s10474_010_0065_z
PublicationCentury 2000
PublicationDate 20110400
2011-4-00
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 4
  year: 2011
  text: 20110400
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Acta mathematica Hungarica
PublicationTitleAbbrev Acta Math Hung
PublicationYear 2011
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References Zygmund (CR5) 1959
Schipp, Wade, Simon, Pál (CR3) 1990
Clarkson, Adams (CR1) 1933; 35
Gogoladze, Meskhia (CR2) 2006; 141
Stein, Weiss (CR4) 1971
A. Zygmund (65_CR5) 1959
L. Gogoladze (65_CR2) 2006; 141
E. M. Stein (65_CR4) 1971
F. Schipp (65_CR3) 1990
J. A. Clarkson (65_CR1) 1933; 35
References_xml – volume: 141
  start-page: 29
  year: 2006
  end-page: 40
  ident: CR2
  article-title: On the absolute convergence of trigonometric Fourier series
  publication-title: Proc. Razmadze Math. Inst.
– year: 1971
  ident: CR4
  publication-title: Introduction to Fourier Analyis on Euclidean Spaces
– year: 1990
  ident: CR3
  publication-title: Walsh Series: an Introduction to Dyadic Harmonic Analysis
– volume: 35
  start-page: 824
  year: 1933
  end-page: 854
  ident: CR1
  article-title: On definitions of bounded variation for functions of two variables
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1933-1501718-2
– year: 1959
  ident: CR5
  publication-title: Trigonometric Series
– volume: 141
  start-page: 29
  year: 2006
  ident: 65_CR2
  publication-title: Proc. Razmadze Math. Inst.
– volume-title: Walsh Series: an Introduction to Dyadic Harmonic Analysis
  year: 1990
  ident: 65_CR3
– volume: 35
  start-page: 824
  year: 1933
  ident: 65_CR1
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1933-1501718-2
– volume-title: Introduction to Fourier Analyis on Euclidean Spaces
  year: 1971
  ident: 65_CR4
– volume-title: Trigonometric Series
  year: 1959
  ident: 65_CR5
SSID ssj0005304
Score 1.8680125
Snippet We consider the double Walsh orthonormal system on the unit square , where { w m ( x )} is the ordinary Walsh system on the unit interval in the Paley...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 122
SubjectTerms Mathematics
Mathematics and Statistics
Title Absolute convergence of double Walsh–Fourier series and related results
URI https://link.springer.com/article/10.1007/s10474-010-0065-z
Volume 131
WOSCitedRecordID wos000288250300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Standard
  customDbUrl:
  eissn: 1588-2632
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005304
  issn: 0236-5294
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oETyFI2J_axQlRwoEJi6y3yMhZIVYqalENP_AN_yJcQO0lLJUCCUy7jyBo_x57MvDcInVjJcgYeJzJQIYkMSMKV8UhpbbTyfOlp5ZpNJL0e6_f5Tc3jzptq9yYl6b7UX8huUWIrJiwTOqZksoiWqBWbsSH67cOsriN0PQOtMnoZZfGoSWV-94r5w2g-E-oOmO76v6a2gdbq-yTuVADYRAuQbaHV66kYa76NrjrSAQywKzF3bEvAQ4P1cCwHgB9LBD59vL13q_Z12IISciwyjR3TBewzHw-KfAfddy_uzi9J3UGBqICxgsSGC7sIsU5oojSjkQZfGAOhFCzSLPalryCIqaJgykjMMzQKyxHS-Awk98Jd1MqGGewhLKhgOpY-VzGUMSflDExslAQRCJlEvI28xpWpquXFbZeLQToTRrZeSksvpdZL6aSNTqdDXiptjd-Mzxrfp_U2y3-23v-T9QFaqX4V2zU8RK1iNIYjtKxei-d8dOzg9Qn1e84B
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBJKfSWNnkc4pi4DcGpeytNcoLC6GTtfNiT_8F_6C-xSdvNgQr61JeTEk6-NDk953wfQmeaspyCzSzuCs_yFXCLCWVbubWSwna4LYURmwi7Xdrvs9uyjzutqt2rlKT5Un9pdvNDXTGhO6EDYk0W0ZKvVXZ0iH73MKvr8IxmoGZGz6Ms5lepzO9eMX8YzWdCzQHT3PjX1DbRenmfxI0CAFtoAZJttNaZkrGmO-i6wQ3AAJsSc9NtCXiosByO-QDwY47Ap4-392YhX4c1KCHFcSKx6XQB_UzHgyzdRffNq95lyyoVFCzhUppZgWKxXoRAhiQUkhJfghMrBR6PqS9p4HBHgBsQQUDlkZitiO_lI7hyKHBme3uolgwT2Ec4JjGVAXeYCCCPOQmjoAIlOMRuzEOf1ZFduTISJb24VrkYRDNiZO2lKPdSpL0UTerofDrkpeDW-M34ovJ9VG6z9Gfrgz9Zn6KVVq_TjtrX3ZtDtFr8NtbreYRq2WgMx2hZvGbP6ejEQO0Tp-zQ5Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgIAQHdkRZfeAEisjmxD5WQEQFVBVrb1FsjwVSlVZNyqEn_oE_5EuIs7RUAiTEKZdxZM28yJ7MzHsIHWnKcgomM7gtHMNVwA0mlGlk1koK0-KmFLnYhN9q0U6HtUud06Tqdq9KksVMg2ZpitPTvlSnXwbfXF93T-ipaI8Yo1k052aJjO7pur17nPR4OLl-oGZJzzIu5lZlze9eMX0wTVdF88MmWPn3NlfRcnnPxI0CGGtoBuJ1tHQzJmlNNlCzwXPgAc5bz_MpTMA9hWVvyLuAnzJkPn-8vQeFrB3WYIUER7HE-QQM6Gcy7KbJJnoILu7PLo1SWcEQNqWp4SkW6eB40ie-kJS4EqxIKXB4RF1JPYtbAmyPCAIqy9BMRVwnW8GVRYEz09lCtbgXwzbCEYmo9LjFhAdZLkoYBeUpwSGyI-67rI7Myq2hKGnHtfpFN5wQJmsvhZmXQu2lcFRHx-Ml_YJz4zfjkyoOYfn5JT9b7_zJ-hAttM-D8LrZutpFi8XfZB3OPVRLB0PYR_PiNX1JBgc56j4BFJ3ZyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absolute+convergence+of+double+Walsh%E2%80%93Fourier+series+and+related+results&rft.jtitle=Acta+mathematica+Hungarica&rft.au=M%C3%B3ricz%2C+Ferenc&rft.au=Veres%2C+Antal&rft.date=2011-04-01&rft.pub=Springer+Netherlands&rft.issn=0236-5294&rft.eissn=1588-2632&rft.volume=131&rft.issue=1-2&rft.spage=122&rft.epage=137&rft_id=info:doi/10.1007%2Fs10474-010-0065-z&rft.externalDocID=10_1007_s10474_010_0065_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0236-5294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0236-5294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0236-5294&client=summon