Parallel stochastic gradient algorithms for large-scale matrix completion
This paper develops Jellyfish , an algorithm for solving data-processing problems with matrix-valued decision variables regularized to have low rank. Particular examples of problems solvable by Jellyfish include matrix completion problems and least-squares problems regularized by the nuclear norm or...
Uloženo v:
| Vydáno v: | Mathematical programming computation Ročník 5; číslo 2; s. 201 - 226 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.06.2013
|
| Témata: | |
| ISSN: | 1867-2949, 1867-2957 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper develops
Jellyfish
, an algorithm for solving data-processing problems with matrix-valued decision variables regularized to have low rank. Particular examples of problems solvable by
Jellyfish
include matrix completion problems and least-squares problems regularized by the nuclear norm or
-norm.
Jellyfish
implements a projected incremental gradient method with a biased, random ordering of the increments. This biased ordering allows for a parallel implementation that admits a speed-up nearly proportional to the number of processors. On large-scale matrix completion tasks,
Jellyfish
is orders of magnitude more efficient than existing codes. For example, on the Netflix Prize data set, prior art computes rating predictions in approximately 4 h, while
Jellyfish
solves the same problem in under 3 min on a 12 core workstation. |
|---|---|
| ISSN: | 1867-2949 1867-2957 |
| DOI: | 10.1007/s12532-013-0053-8 |