Generalized Statistically Almost Convergence Based on the Difference Operator which Includes the (p, q)-Gamma Function and Related Approximation Theorems

This paper is devoted to extend the notion of almost convergence and its statistical forms with respect to the difference operator involving ( p ,  q )-gamma function and an increasing sequence ( λ n ) of positive numbers. We firstly introduce some new concepts of almost Δ h , α , β [ a , b , c ] (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Resultate der Mathematik Ročník 73; číslo 1
Hlavní autori: Kadak, Uğur, Mohiuddine, S. A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.03.2018
Predmet:
ISSN:1422-6383, 1420-9012
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper is devoted to extend the notion of almost convergence and its statistical forms with respect to the difference operator involving ( p ,  q )-gamma function and an increasing sequence ( λ n ) of positive numbers. We firstly introduce some new concepts of almost Δ h , α , β [ a , b , c ] ( λ ) -statistical convergence, statistical almost Δ h , α , β [ a , b , c ] ( λ ) -convergence and strong almost [ Δ h , α , β [ a , b , c ] ( λ ) ] r -convergence. Moreover, we present some inclusion relations between these newly proposed methods and give some counterexamples to show that these are non-trivial generalizations of existing literature on this topic. We then prove a Korovkin type approximation theorem for functions of two variables through statistically almost Δ h , α , β [ a , b , c ] ( λ ) -convergence and also present an illustrative example via bivariate non-tensor type Meyer–König and Zeller generalization of Bernstein power series. Furthermore, we estimate the rate of almost convergence of approximating linear operators by means of the modulus of continuity and derive some Voronovskaja type results by using the generalized Meyer–König and Zeller operators. Finally, some computational and geometrical interpretations for the convergence of operators to a function are presented.
AbstractList This paper is devoted to extend the notion of almost convergence and its statistical forms with respect to the difference operator involving ( p ,  q )-gamma function and an increasing sequence ( λ n ) of positive numbers. We firstly introduce some new concepts of almost Δ h , α , β [ a , b , c ] ( λ ) -statistical convergence, statistical almost Δ h , α , β [ a , b , c ] ( λ ) -convergence and strong almost [ Δ h , α , β [ a , b , c ] ( λ ) ] r -convergence. Moreover, we present some inclusion relations between these newly proposed methods and give some counterexamples to show that these are non-trivial generalizations of existing literature on this topic. We then prove a Korovkin type approximation theorem for functions of two variables through statistically almost Δ h , α , β [ a , b , c ] ( λ ) -convergence and also present an illustrative example via bivariate non-tensor type Meyer–König and Zeller generalization of Bernstein power series. Furthermore, we estimate the rate of almost convergence of approximating linear operators by means of the modulus of continuity and derive some Voronovskaja type results by using the generalized Meyer–König and Zeller operators. Finally, some computational and geometrical interpretations for the convergence of operators to a function are presented.
ArticleNumber 9
Author Mohiuddine, S. A.
Kadak, Uğur
Author_xml – sequence: 1
  givenname: Uğur
  surname: Kadak
  fullname: Kadak, Uğur
  email: ugurkadak@gmail.com
  organization: Department of Mathematics, Gazi University
– sequence: 2
  givenname: S. A.
  surname: Mohiuddine
  fullname: Mohiuddine, S. A.
  organization: Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University
BookMark eNp9kM1OHDEMxyMEUoH2AXrLkUqEOsl8HpcFtkhISJSeR2nGYYNmkmmS5etReuqz8GQNsz31wMmW7d_f9v-A7DrvkJDPHE44QP01AoAoGfCGQd20rNoh-7wQwFrgYnfOBatkIz-QgxjvAUohuNgnv1foMKjBvmBPvyeVbExWq2F4poth9DHRpXcPGO7QaaSnKuYx72haIz2zxmCY69dT1kg-0Me11Wt66fSw6THOY0fT8eufX1_YSo2johcbp5PNCsr19AYHlbLgYpqCf7Kjmju3a_QBx_iR7Bk1RPz0Lx6SHxfnt8tv7Op6dblcXDEtmiaxqpXqZ22MNL0uCoGFbqCVpiiU4qjbEkuQujaN4X2LJReFLEVTla0CCbLlSh4SvtXVwccY0HRTyLeE545D92ZutzW3y-Z2b-Z2VWbq_xht03x-CsoO75JiS8a8xd1h6O79Jrj84DvQXw5-k1Y
CitedBy_id crossref_primary_10_1186_s13660_020_02317_9
crossref_primary_10_1007_s40590_021_00355_x
crossref_primary_10_1186_s13662_020_03099_6
crossref_primary_10_2298_FIL2408785K
crossref_primary_10_1186_s13662_020_02925_1
crossref_primary_10_47745_ausm_2024_0011
crossref_primary_10_1007_s41980_025_00977_1
crossref_primary_10_1007_s41478_023_00607_1
crossref_primary_10_1155_2021_5511610
crossref_primary_10_3390_math11041009
crossref_primary_10_1007_s40995_025_01846_6
crossref_primary_10_1155_2020_9657489
crossref_primary_10_1155_2021_6683004
crossref_primary_10_1007_s13398_018_0591_z
crossref_primary_10_1186_s13662_020_03164_0
crossref_primary_10_2298_FIL2432501O
crossref_primary_10_1007_s10473_021_0519_0
crossref_primary_10_1007_s13398_018_0613_x
crossref_primary_10_1007_s13398_020_00802_w
crossref_primary_10_1186_s13660_020_02382_0
crossref_primary_10_1007_s40995_025_01793_2
crossref_primary_10_1515_jaa_2025_0019
crossref_primary_10_1007_s00500_020_04805_y
crossref_primary_10_1007_s11766_022_4105_6
crossref_primary_10_1007_s41980_023_00795_3
crossref_primary_10_1186_s13660_020_02534_2
crossref_primary_10_1155_2020_9298650
crossref_primary_10_1186_s13662_020_03125_7
crossref_primary_10_1186_s13660_019_2055_1
crossref_primary_10_1186_s13660_019_2090_y
crossref_primary_10_1007_s40863_020_00203_2
crossref_primary_10_1080_03081079_2021_1942867
crossref_primary_10_1186_s13660_018_1693_z
crossref_primary_10_1007_s40995_021_01125_0
crossref_primary_10_1080_03081079_2019_1608985
crossref_primary_10_1002_mma_7361
crossref_primary_10_1007_s40995_025_01812_2
crossref_primary_10_1186_s13660_018_1877_6
crossref_primary_10_1007_s40995_021_01219_9
crossref_primary_10_1186_s13662_021_03666_5
crossref_primary_10_1080_01630563_2018_1470096
crossref_primary_10_31801_cfsuasmas_1611730
crossref_primary_10_1007_s40995_025_01782_5
crossref_primary_10_1080_01630563_2022_2070205
crossref_primary_10_1515_gmj_2023_2116
crossref_primary_10_1007_s40995_020_01024_w
Cites_doi 10.1007/s11117-015-0338-4
10.1186/s13660-016-1045-9
10.4064/sm-19-1-89-94
10.1080/01630563.2016.1219743
10.1216/rmjm/1030539612
10.1016/j.jmaa.2016.05.062
10.1016/j.aej.2016.03.037
10.1016/j.aej.2017.02.022
10.1016/S0377-0427(02)00661-1
10.1007/978-1-4614-6946-9
10.3846/13926292.2005.9637292
10.14492/hokmj/1350912989
10.1186/s13660-016-1040-1
10.1007/s11785-016-0553-4
10.1016/j.amc.2016.02.008
10.1016/j.ins.2003.09.011
10.1007/s00025-015-0472-0
10.1016/j.aml.2009.06.005
10.1016/j.cam.2013.05.012
10.22436/jnsa.010.02.42
10.1007/BF02591381
10.1016/j.aml.2010.07.004
10.1002/mma.3721
10.1016/j.jmaa.2005.03.086
10.1007/s00025-017-0706-4
10.1016/j.ins.2005.05.008
10.1016/j.jmaa.2007.03.007
10.1524/anly.1985.5.4.301
10.4153/CMB-1981-027-5
10.22436/jnsa.008.06.10
10.1186/1687-1847-2013-212
10.1016/j.jmaa.2016.11.084
10.1007/BF02393648
10.1016/j.aml.2011.05.006
10.1016/j.aml.2006.09.002
10.4064/cm-2-3-4-241-244
10.1007/s00025-016-0634-8
10.4064/cm-2-2-98-108
10.1007/s11785-016-0633-5
10.1515/gmj-2016-0007
10.1515/gmj-2016-0057
10.1186/1029-242X-2014-81
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
DBID AAYXX
CITATION
DOI 10.1007/s00025-018-0789-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID 10_1007_s00025_018_0789_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c288t-693ab7ff3fdc442e4c8093f44aa1ec95e503c7f8f1d9e51243528659a030391a3
IEDL.DBID RSV
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426765600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-6383
IngestDate Sat Nov 29 03:47:21 EST 2025
Tue Nov 18 22:04:32 EST 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords bivariate nontensor type Meyer–Konig and Zeller operators
40A30
41A25
41A36
Korovkin and Voronovskaja type approximation theorems
41A10
rate of convergence
Banach limit
Gamma function
40G15
Statistically almost convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-693ab7ff3fdc442e4c8093f44aa1ec95e503c7f8f1d9e51243528659a030391a3
ParticipantIDs crossref_primary_10_1007_s00025_018_0789_6
crossref_citationtrail_10_1007_s00025_018_0789_6
springer_journals_10_1007_s00025_018_0789_6
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationYear 2018
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References BrahaNLSrivastavaHMMohiuddineSAA Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Valle Poussin meanAppl. Math. Comput.201422816216931519051364.41012
GadjievADOrhanCSome approximation theorems via statistical convergenceRocky Mt. J. Math.200232129138191135210.1216/rmjm/10305396121039.41018
BohmanHOn approximation of continuous and of analytic functionsArkiv Math.1952243564996610.1007/BF025913810048.29901
MursaleenMEdelyOsama H HOn the invariant mean and statistical convergenceAppl. Math. Lett.20092217001704256098010.1016/j.aml.2009.06.0051183.40006
KadakUGeneralized weighted invariant mean based on fractional difference operator with applications to approximation theorems for functions of two variablesResults Math.201772311811202372160810.1007/s00025-016-0634-81376.41025
EtMAltınYAltınokHOn almost statistical convergence of generalized difference sequences of fuzzy numbersMath. Model. Anal.200510434535221933731097.40001
FridyJOn the statistical convergenceAnalysis1985530131381658210.1524/anly.1985.5.4.3010588.40001
AltayBBaşarFCertain topological properties and duals of the domain of a triangle matrix in a sequence spacesJ. Math. Anal. Appl.2007336632645234853110.1016/j.jmaa.2007.03.0071152.46003
AralAGuptaVAgarwalRPApplications of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} -Calculus in Operator Theory2013BerlinSpringer10.1007/978-1-4614-6946-91273.41001
KadakUOn weighted statistical convergence based on (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-integers and related approximation theorems for functions of two variablesJ. Math. Anal. Appl.2016443752764351431710.1016/j.jmaa.2016.05.0621354.40002
Banach S.: Theorie des Operations Lineaires, Monograe Mat., PWN, Warszawa (1932)
Mohiuddine, S.A.: Statistical A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-summability with application to Korovkin’s type approximation theorem. J. Inequal. Appl. 2016 (2016) Article ID 101
EtMColakROn some generalized difference sequence spacesSoochow J. Math.199521437738613623040841.46006
AcarTAralARaşaIThe new forms of Voronovskaya’s theorem in weighted spacesPositivity20162012540346203710.1007/s11117-015-0338-41334.41015
BelenCMohiuddineSAGeneralized statistical convergence and applicationAppl. Math. Comput.20132199821982630496031308.40003
AcarTQuantitative q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Voronovskaya and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Grss-Voronovskaya-type results for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Szasz operatorsGeorgian Math. J.2016234459468356597710.1515/gmj-2016-00071351.41020
AcarTAsymptotic formulas for generalized Szasz–Mirakyan operatorsAppl. Math. Comput.20152632332393348539
AltınADoğruOTaşdelenFThe generalization of Meyer–Konig and Zeller operators by generating functionsJ. Math. Anal. Appl.20053121811941076.41008
KadakUBrahaNLSrivastavaHMStatistical weighted B-summability and its applications to approximation theoremsAppl. Math. Comput.201730280963602740
BaliarsinghPSome new difference sequence spaces of fractional order and their dual spacesAppl. Math. Comput.2013219189737974230495951300.46004
Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Baskakov-Durrmeyer-Stancu operators. Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-016-0633-5
AlotaibiAMursaleenMGeneralized statistical convergence of difference sequencesAdv. Differ. Equ.20132013212308986310.1186/1687-1847-2013-2121379.40002
DirikFŞahinPOStatistical Relatively Equal Convergence and Korovkin-Type Approximation TheoremResults Math.201772316131621372163510.1007/s00025-017-0706-41376.41024
FastHSur la convergence statistiqueColloq. Math.195122412444854810.4064/cm-2-3-4-241-2440044.33605
LorentzGGA contribution to the theory of divergent seriesActa Math.1948801671902786810.1007/BF023936480031.29501
MohiuddineSAAn application of almost convergence in approximation theoremsApplied Math. Letters20112418561860281222610.1016/j.aml.2011.05.0061252.41022
AltayBBaşarFMursaleenMOn the Euler sequence spaces which include the spaces ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} and ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document} IInform. Sci.20061761014501462220793810.1016/j.ins.2005.05.0081101.46015
Meyer-KonigWZellerKBernsteinsche potenzreihenStudia Math.196019899411196510.4064/sm-19-1-89-940091.14506
EdelyOHHMohiuddineSANomanAKKorovkin type approximation theorems obtained through generalized statistical convergenceAppl. Math. Lett.20102313821387271851610.1016/j.aml.2010.07.0041206.40003
BaliarsinghPOn a fractional difference operatorAlexandria Eng. J.20165521811181610.1016/j.aej.2016.03.037
GuoSQiQThe moments for Meyer–Konig and Zeller operatorsAppl. Math. Lett.200720719722231469710.1016/j.aml.2006.09.0021132.41324
KadakUBaliarsinghPOn certain Euler difference sequence spaces of fractional order and related dual propertiesJ. Nonlinear Sci. Appl.201589971004336572110.22436/jnsa.008.06.101348.46005
AcarT(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Generalization of Szász–Mirakyan operatorsMath. Methods Appl. Sci.2016391026852695351277510.1002/mma.37211342.41019
SteinhausHSur la convergence ordinaire et la convergence asymptotiqueColloq. Math.19512737410.4064/cm-2-2-98-108
VoronovskajaEVDétermination de la forme asymptotique de l’approximation des fonctions par les polynomes de MBernstein, Doklady Akademii Nauk SSSR19324798558.1062.04
ŠalátTOn statistically convergent sequences of real numbersMath. Slovaca1980301391505872390437.40003
Sadjang, P.N.: On the (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Gamma and the (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Beta functions, arXiv:1506.07394v1
Baliarsingh, P., Nayak, L.: A note on fractional difference operators. Alexandria Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.02.022
KoncaSBaşarırMOn some spaces of almost lacunary convergent sequences derived by Riesz mean and almost lacunary statistical convergence in a real n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-normed spaceJ. Inequal. Appl.2014201481334680510.1186/1029-242X-2014-811375.46007
KızmazHOn certain sequence spacesCanad. Math. Bull.198124216917661944210.4153/CMB-1981-027-50454.46010
OzarslanMANew Korovkin type theorem for non-tensor Meyer–Konig and Zeller OperatorsResults Math.201669327343349956510.1007/s00025-015-0472-01339.41034
ErençinARaşaIVoronovskaya type theorems in weighted spacesNumer. Funct. Anal. Optim.2016371215171528357901810.1080/01630563.2016.12197431357.41022
Ilarslan, H.G.I., Acar, T.: Approximation by bivariate (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Baskakov-Kantorovich operators. Georgian Math. J. (2016). https://doi.org/10.1515/gmj-2016-0057
KadakUWeighted statistical convergence based on generalized difference operator involving (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-gamma function and its applications to approxi
789_CR28
H Kızmaz (789_CR25) 1981; 24
T Acar (789_CR18) 2016; 39
A Altın (789_CR53) 2005; 312
789_CR24
H Steinhaus (789_CR4) 1951; 2
789_CR20
M Mursaleen (789_CR10) 2004; 162
789_CR21
T Acar (789_CR51) 2016; 23
789_CR22
789_CR23
789_CR1
U Kadak (789_CR11) 2017; 302
A-J Lopez-Moreno (789_CR46) 2003; 150
U Kadak (789_CR30) 2017; 448
S Konca (789_CR15) 2014; 2014
U Kadak (789_CR35) 2015; 8
B Altay (789_CR31) 2007; 336
AD Gadjiev (789_CR40) 2002; 32
NL Braha (789_CR41) 2014; 228
H Aktuğlu (789_CR16) 2014; 259
M Et (789_CR26) 1995; 21
OHH Edely (789_CR42) 2010; 23
E Savaş (789_CR14) 2000; 29
M Et (789_CR37) 2005; 10
A Aral (789_CR17) 2013
789_CR8
EV Voronovskaja (789_CR48) 1932; 4
J Fridy (789_CR6) 1985; 5
A Alotaibi (789_CR33) 2013; 2013
W Meyer-Konig (789_CR44) 1960; 19
P Baliarsingh (789_CR27) 2016; 55
U Kadak (789_CR12) 2017; 72
U Kadak (789_CR29) 2016; 443
MA Ozarslan (789_CR45) 2016; 69
SA Mohiuddine (789_CR7) 2011; 24
S Guo (789_CR47) 2007; 20
F Dirik (789_CR43) 2017; 72
B Altay (789_CR32) 2006; 176
P Baliarsingh (789_CR34) 2013; 219
M Mursaleen (789_CR19) 2016; 10
H Bohman (789_CR38) 1952; 2
PP Korovkin (789_CR39) 1960
T Acar (789_CR52) 2015; 263
C Belen (789_CR5) 2013; 219
H Fast (789_CR3) 1951; 2
M Mursaleen (789_CR13) 2009; 22
GG Lorentz (789_CR2) 1948; 80
T Šalát (789_CR9) 1980; 30
T Acar (789_CR49) 2016; 20
A Erençin (789_CR50) 2016; 37
M Kirişci (789_CR36) 2017; 10
References_xml – reference: Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,q)$$\end{document}-Baskakov operators. J. Inequal. Appl. 2016 (2016) Article ID 98
– reference: Mohiuddine, S.A.: Statistical A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-summability with application to Korovkin’s type approximation theorem. J. Inequal. Appl. 2016 (2016) Article ID 101
– reference: KirişciMKadakUThe method of almost convergence with operator of the form fractional order and applicationsJ. Nonlinear Sci. Appl.201710828842362304210.22436/jnsa.010.02.42
– reference: BrahaNLSrivastavaHMMohiuddineSAA Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Valle Poussin meanAppl. Math. Comput.201422816216931519051364.41012
– reference: LorentzGGA contribution to the theory of divergent seriesActa Math.1948801671902786810.1007/BF023936480031.29501
– reference: KadakUGeneralized weighted invariant mean based on fractional difference operator with applications to approximation theorems for functions of two variablesResults Math.201772311811202372160810.1007/s00025-016-0634-81376.41025
– reference: Sadjang, P.N.: On the (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Gamma and the (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Beta functions, arXiv:1506.07394v1
– reference: KadakUBaliarsinghPOn certain Euler difference sequence spaces of fractional order and related dual propertiesJ. Nonlinear Sci. Appl.201589971004336572110.22436/jnsa.008.06.101348.46005
– reference: GadjievADOrhanCSome approximation theorems via statistical convergenceRocky Mt. J. Math.200232129138191135210.1216/rmjm/10305396121039.41018
– reference: EtMColakROn some generalized difference sequence spacesSoochow J. Math.199521437738613623040841.46006
– reference: KoncaSBaşarırMOn some spaces of almost lacunary convergent sequences derived by Riesz mean and almost lacunary statistical convergence in a real n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-normed spaceJ. Inequal. Appl.2014201481334680510.1186/1029-242X-2014-811375.46007
– reference: BohmanHOn approximation of continuous and of analytic functionsArkiv Math.1952243564996610.1007/BF025913810048.29901
– reference: VoronovskajaEVDétermination de la forme asymptotique de l’approximation des fonctions par les polynomes de MBernstein, Doklady Akademii Nauk SSSR19324798558.1062.04
– reference: KızmazHOn certain sequence spacesCanad. Math. Bull.198124216917661944210.4153/CMB-1981-027-50454.46010
– reference: KadakUBrahaNLSrivastavaHMStatistical weighted B-summability and its applications to approximation theoremsAppl. Math. Comput.201730280963602740
– reference: AcarTAsymptotic formulas for generalized Szasz–Mirakyan operatorsAppl. Math. Comput.20152632332393348539
– reference: BaliarsinghPSome new difference sequence spaces of fractional order and their dual spacesAppl. Math. Comput.2013219189737974230495951300.46004
– reference: BaliarsinghPOn a fractional difference operatorAlexandria Eng. J.20165521811181610.1016/j.aej.2016.03.037
– reference: KadakUWeighted statistical convergence based on generalized difference operator involving (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-gamma function and its applications to approximation theoremsJ. Math. Anal. Appl.201744816331650358230010.1016/j.jmaa.2016.11.08406668576
– reference: AktuğluHKorovkin type approximation theorems proved via αβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \beta $$\end{document}-statistical convergenceJ. Comput. Appl. Math.2014259174181312348110.1016/j.cam.2013.05.0121291.41015
– reference: AltayBBaşarFCertain topological properties and duals of the domain of a triangle matrix in a sequence spacesJ. Math. Anal. Appl.2007336632645234853110.1016/j.jmaa.2007.03.0071152.46003
– reference: GuoSQiQThe moments for Meyer–Konig and Zeller operatorsAppl. Math. Lett.200720719722231469710.1016/j.aml.2006.09.0021132.41324
– reference: ErençinARaşaIVoronovskaya type theorems in weighted spacesNumer. Funct. Anal. Optim.2016371215171528357901810.1080/01630563.2016.12197431357.41022
– reference: AcarT(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Generalization of Szász–Mirakyan operatorsMath. Methods Appl. Sci.2016391026852695351277510.1002/mma.37211342.41019
– reference: MursaleenMEdelyOsama H HOn the invariant mean and statistical convergenceAppl. Math. Lett.20092217001704256098010.1016/j.aml.2009.06.0051183.40006
– reference: FridyJOn the statistical convergenceAnalysis1985530131381658210.1524/anly.1985.5.4.3010588.40001
– reference: Mursaleen, M., Ansari, K.J., Khan, A.: On (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015), Erratum to ”On (p, q)-analogue of Bernstein operators”. Appl. Math. Comput. 278, 70–71 (2016)
– reference: MursaleenMEdelyOHHGeneralized statistical convergenceInf. Sci.2004162287294207624210.1016/j.ins.2003.09.0111062.40003
– reference: MursaleenMKhanFKhanAApproximation by (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Lorentz polynomials on a compact diskComplex Anal. Oper. Theory.201610817251740355836510.1007/s11785-016-0553-41360.41004
– reference: Meyer-KonigWZellerKBernsteinsche potenzreihenStudia Math.196019899411196510.4064/sm-19-1-89-940091.14506
– reference: KorovkinPPLinear Operators and Approximation Theory1960DelhiHindustan Publishing Corporation
– reference: AcarTAralARaşaIThe new forms of Voronovskaya’s theorem in weighted spacesPositivity20162012540346203710.1007/s11117-015-0338-41334.41015
– reference: Lopez-MorenoA-JMunoz-DelgadoF-JAsymptotic expansion of multivariate conservative linear operatorsJ. Comput. Appl. Math.20031502219251194774510.1016/S0377-0427(02)00661-11025.41013
– reference: FastHSur la convergence statistiqueColloq. Math.195122412444854810.4064/cm-2-3-4-241-2440044.33605
– reference: EtMAltınYAltınokHOn almost statistical convergence of generalized difference sequences of fuzzy numbersMath. Model. Anal.200510434535221933731097.40001
– reference: AcarTQuantitative q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Voronovskaya and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Grss-Voronovskaya-type results for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Szasz operatorsGeorgian Math. J.2016234459468356597710.1515/gmj-2016-00071351.41020
– reference: ŠalátTOn statistically convergent sequences of real numbersMath. Slovaca1980301391505872390437.40003
– reference: Ilarslan, H.G.I., Acar, T.: Approximation by bivariate (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Baskakov-Kantorovich operators. Georgian Math. J. (2016). https://doi.org/10.1515/gmj-2016-0057
– reference: Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-Baskakov-Durrmeyer-Stancu operators. Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-016-0633-5
– reference: SteinhausHSur la convergence ordinaire et la convergence asymptotiqueColloq. Math.19512737410.4064/cm-2-2-98-108
– reference: AltayBBaşarFMursaleenMOn the Euler sequence spaces which include the spaces ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} and ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document} IInform. Sci.20061761014501462220793810.1016/j.ins.2005.05.0081101.46015
– reference: Banach S.: Theorie des Operations Lineaires, Monograe Mat., PWN, Warszawa (1932)
– reference: BelenCMohiuddineSAGeneralized statistical convergence and applicationAppl. Math. Comput.20132199821982630496031308.40003
– reference: SavaşEStrong almost convergence and almost λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-statistical convergenceHokkaido Math. J.2000293531536179549010.14492/hokmj/13509129890963.40001
– reference: EdelyOHHMohiuddineSANomanAKKorovkin type approximation theorems obtained through generalized statistical convergenceAppl. Math. Lett.20102313821387271851610.1016/j.aml.2010.07.0041206.40003
– reference: AltınADoğruOTaşdelenFThe generalization of Meyer–Konig and Zeller operators by generating functionsJ. Math. Anal. Appl.20053121811941076.41008
– reference: AralAGuptaVAgarwalRPApplications of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} -Calculus in Operator Theory2013BerlinSpringer10.1007/978-1-4614-6946-91273.41001
– reference: KadakUOn weighted statistical convergence based on (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-integers and related approximation theorems for functions of two variablesJ. Math. Anal. Appl.2016443752764351431710.1016/j.jmaa.2016.05.0621354.40002
– reference: OzarslanMANew Korovkin type theorem for non-tensor Meyer–Konig and Zeller OperatorsResults Math.201669327343349956510.1007/s00025-015-0472-01339.41034
– reference: MohiuddineSAAn application of almost convergence in approximation theoremsApplied Math. Letters20112418561860281222610.1016/j.aml.2011.05.0061252.41022
– reference: DirikFŞahinPOStatistical Relatively Equal Convergence and Korovkin-Type Approximation TheoremResults Math.201772316131621372163510.1007/s00025-017-0706-41376.41024
– reference: Baliarsingh, P., Nayak, L.: A note on fractional difference operators. Alexandria Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.02.022
– reference: AlotaibiAMursaleenMGeneralized statistical convergence of difference sequencesAdv. Differ. Equ.20132013212308986310.1186/1687-1847-2013-2121379.40002
– ident: 789_CR24
– volume: 20
  start-page: 25
  issue: 1
  year: 2016
  ident: 789_CR49
  publication-title: Positivity
  doi: 10.1007/s11117-015-0338-4
– ident: 789_CR21
  doi: 10.1186/s13660-016-1045-9
– volume: 19
  start-page: 89
  year: 1960
  ident: 789_CR44
  publication-title: Studia Math.
  doi: 10.4064/sm-19-1-89-94
– volume: 37
  start-page: 1517
  issue: 12
  year: 2016
  ident: 789_CR50
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2016.1219743
– volume: 32
  start-page: 129
  year: 2002
  ident: 789_CR40
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/rmjm/1030539612
– volume-title: Linear Operators and Approximation Theory
  year: 1960
  ident: 789_CR39
– volume: 219
  start-page: 9821
  year: 2013
  ident: 789_CR5
  publication-title: Appl. Math. Comput.
– volume: 443
  start-page: 752
  year: 2016
  ident: 789_CR29
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.05.062
– volume: 55
  start-page: 1811
  issue: 2
  year: 2016
  ident: 789_CR27
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2016.03.037
– ident: 789_CR28
  doi: 10.1016/j.aej.2017.02.022
– volume: 150
  start-page: 219
  issue: 2
  year: 2003
  ident: 789_CR46
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00661-1
– volume-title: Applications of $$q$$ q
  year: 2013
  ident: 789_CR17
  doi: 10.1007/978-1-4614-6946-9
– volume: 4
  start-page: 79
  year: 1932
  ident: 789_CR48
  publication-title: Bernstein, Doklady Akademii Nauk SSSR
– volume: 10
  start-page: 345
  issue: 4
  year: 2005
  ident: 789_CR37
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2005.9637292
– ident: 789_CR1
– volume: 29
  start-page: 531
  issue: 3
  year: 2000
  ident: 789_CR14
  publication-title: Hokkaido Math. J.
  doi: 10.14492/hokmj/1350912989
– ident: 789_CR8
  doi: 10.1186/s13660-016-1040-1
– volume: 10
  start-page: 1725
  issue: 8
  year: 2016
  ident: 789_CR19
  publication-title: Complex Anal. Oper. Theory.
  doi: 10.1007/s11785-016-0553-4
– ident: 789_CR20
  doi: 10.1016/j.amc.2016.02.008
– volume: 162
  start-page: 287
  year: 2004
  ident: 789_CR10
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2003.09.011
– volume: 302
  start-page: 80
  year: 2017
  ident: 789_CR11
  publication-title: Appl. Math. Comput.
– volume: 228
  start-page: 162
  year: 2014
  ident: 789_CR41
  publication-title: Appl. Math. Comput.
– volume: 69
  start-page: 327
  year: 2016
  ident: 789_CR45
  publication-title: Results Math.
  doi: 10.1007/s00025-015-0472-0
– volume: 30
  start-page: 139
  year: 1980
  ident: 789_CR9
  publication-title: Math. Slovaca
– volume: 22
  start-page: 1700
  year: 2009
  ident: 789_CR13
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2009.06.005
– volume: 259
  start-page: 174
  year: 2014
  ident: 789_CR16
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.05.012
– volume: 10
  start-page: 828
  year: 2017
  ident: 789_CR36
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.02.42
– volume: 2
  start-page: 43
  year: 1952
  ident: 789_CR38
  publication-title: Arkiv Math.
  doi: 10.1007/BF02591381
– volume: 23
  start-page: 1382
  year: 2010
  ident: 789_CR42
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.07.004
– volume: 39
  start-page: 2685
  issue: 10
  year: 2016
  ident: 789_CR18
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3721
– volume: 312
  start-page: 181194
  year: 2005
  ident: 789_CR53
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.03.086
– volume: 72
  start-page: 1613
  issue: 3
  year: 2017
  ident: 789_CR43
  publication-title: Results Math.
  doi: 10.1007/s00025-017-0706-4
– volume: 176
  start-page: 1450
  issue: 10
  year: 2006
  ident: 789_CR32
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2005.05.008
– volume: 336
  start-page: 632
  year: 2007
  ident: 789_CR31
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.03.007
– volume: 5
  start-page: 301
  year: 1985
  ident: 789_CR6
  publication-title: Analysis
  doi: 10.1524/anly.1985.5.4.301
– volume: 24
  start-page: 169
  issue: 2
  year: 1981
  ident: 789_CR25
  publication-title: Canad. Math. Bull.
  doi: 10.4153/CMB-1981-027-5
– volume: 8
  start-page: 997
  year: 2015
  ident: 789_CR35
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.008.06.10
– volume: 2013
  start-page: 212
  year: 2013
  ident: 789_CR33
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-212
– volume: 263
  start-page: 233
  year: 2015
  ident: 789_CR52
  publication-title: Appl. Math. Comput.
– volume: 219
  start-page: 9737
  issue: 18
  year: 2013
  ident: 789_CR34
  publication-title: Appl. Math. Comput.
– volume: 448
  start-page: 1633
  year: 2017
  ident: 789_CR30
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.11.084
– volume: 80
  start-page: 167
  year: 1948
  ident: 789_CR2
  publication-title: Acta Math.
  doi: 10.1007/BF02393648
– volume: 24
  start-page: 1856
  year: 2011
  ident: 789_CR7
  publication-title: Applied Math. Letters
  doi: 10.1016/j.aml.2011.05.006
– volume: 20
  start-page: 719
  year: 2007
  ident: 789_CR47
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.09.002
– volume: 2
  start-page: 241
  year: 1951
  ident: 789_CR3
  publication-title: Colloq. Math.
  doi: 10.4064/cm-2-3-4-241-244
– volume: 72
  start-page: 1181
  issue: 3
  year: 2017
  ident: 789_CR12
  publication-title: Results Math.
  doi: 10.1007/s00025-016-0634-8
– volume: 2
  start-page: 73
  year: 1951
  ident: 789_CR4
  publication-title: Colloq. Math.
  doi: 10.4064/cm-2-2-98-108
– ident: 789_CR23
  doi: 10.1007/s11785-016-0633-5
– volume: 21
  start-page: 377
  issue: 4
  year: 1995
  ident: 789_CR26
  publication-title: Soochow J. Math.
– volume: 23
  start-page: 459
  issue: 4
  year: 2016
  ident: 789_CR51
  publication-title: Georgian Math. J.
  doi: 10.1515/gmj-2016-0007
– ident: 789_CR22
  doi: 10.1515/gmj-2016-0057
– volume: 2014
  start-page: 81
  year: 2014
  ident: 789_CR15
  publication-title: J. Inequal. Appl.
  doi: 10.1186/1029-242X-2014-81
SSID ssj0052212
Score 2.4498644
Snippet This paper is devoted to extend the notion of almost convergence and its statistical forms with respect to the difference operator involving ( p ,  q )-gamma...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Title Generalized Statistically Almost Convergence Based on the Difference Operator which Includes the (p, q)-Gamma Function and Related Approximation Theorems
URI https://link.springer.com/article/10.1007/s00025-018-0789-6
Volume 73
WOSCitedRecordID wos000426765600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-9012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052212
  issn: 1422-6383
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXYDnBgR5RNPnBgi5TEzuJjKRQObGJTb5HrRa2UpoWU9VM48S18GWM3qYQESHCLookVecYzz5qZNwht-oDa4qYfOU3uMYfSQMCTjE3rE-Br4kvP9lbdnkRnZ3GjwS6KPu68rHYvU5LWUw-b3Vw7etX1YsdQpDvhKBqHaBeb03h5dVu6X8ATgxQnhVsWGBcpU5nfLfE1GH3NhNoAU5_516_NoukCT-LqwADm0IjK5tHU6ZCMNV9AbwW1dPtVSWzApeVm5mn6gqtpp5v3cc2UntsuTIX3IaxJ3M0wrIAPivEp8P68p2xGHj-12qKFwa-kD1LlVmyrt_fxfrftHPFOh-M6hEqjbswziW2xHSxYNdzlz-1BoyS2jACqky-im_rhde3YKUYyOAK02ndCRngz0ppoKSj1FRWxy4imlHNPCRaowCUi0rH2JFOAJaghjwkDxsGXEOZxsoTGsm6mlhEO4U4vAS5xoQU4DsYCHjCtfB1HVCifVJBb6iYRBV-5GZuRJkOmZbvtCWx7YrY9CStoZ_hJb0DW8ZvwbqnMpDi3-c_SK3-SXkWTvrUGU6u2hsb69w9qHU2IR9Dw_Ya110-C8eYz
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6VUAl64I1Iee2BQ3lYsr3rxx4DJaVqkla8xM3a7ENEcpwQJy3wUzjxW_rLOruxI0WCSnCzrNmVtTOe-VYz8w1Cez6gtrjtR06be8yhNBDwJGPT-gT4mvjSs71V142o1Ypvbtivoo87L6vdy5Sk9dSTZjfXjl51vdgxFOlOOINmKQQsU8d3fnFdul_AE-MUJ4VbFhgXKVOZL20xHYymM6E2wNQX3_VpS2ihwJO4NjaAZfRBZSvoU3NCxpqvoqeCWrrzqCQ24NJyM_M0fcC1tNvLh_jElJ7bLkyFjyGsSdzLMOyAvxbjU-D9z76yGXn857YjbjH4lXQkVW7FvvSP_j7f7TvfeLfLcR1CpVE35pnEttgONqwZ7vL7zrhREltGANXN19BV_fTy5MwpRjI4ArQ6dEJGeDvSmmgpKPUVFbHLiKaUc08JFqjAJSLSsfYkU4AlqCGPCQPGwZcQ5nGyjipZL1MbCIdwp5cAl7jQAhwHYwEPmFa-jiMqlE-qyC11k4iCr9yMzUiTCdOyPfYEjj0xx56EVXQwWdIfk3X8T_iwVGZS_Lf569Kf3yS9i-bOLpuNpPG99WMTzfvWMkzd2haqDAcjtY0-it-g7cGOtd1_VZvpFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BQKgcoKWtCK_uoYcCtWJ71489hoS0iJBGaol6szb7UCI5ToiTvn5KT_wWflln13akSKUS4mZZsytrZzzzrWbmG4T2fUBt8dCPnCH3mENpIOBJxqb1CfA18aVne6sG3ajXi8_PWb-cc5pX1e5VSrLoaTAsTdmiMZO6sWp8c-0YVteLHUOX7oSP0RNqZgaZ6_rpoHLFgC2KdCeFGxcYGqnSmvdtsR6Y1rOiNth0Xv73Z26iFyXOxM3CMLbQI5W9Qs9_rEha8210W1JOj2-UxAZ0Ws5mnqbXuJlOpvkCt0xJuu3OVPgLhDuJpxmGHXC7HKsC709mymbq8eVoLEYY_E26lCq3Ygezwz-_f310jvhkwnEHQqgxA8wziW0RHmzYNJzmV-OigRJbpgA1yXfQz87Xs9axU45qcARoe-GEjPBhpDXRUlDqKypilxFNKeeeEixQgUtEpGPtSaYAY1BDKhMGjIOPIczjZBfVsmmmXiMcwl1fAoziQgtwKIwFPGBa-TqOqFA-qSO30lMiSh5zM04jTVYMzPbYEzj2xBx7EtbRp9WSWUHi8ZDw50qxSfk_53-XfvNP0nvoWb_dSbrfet_fog3fGoYpZ3uHaov5Ur1HT8UFKHv-wZrxHWoq8fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Statistically+Almost+Convergence+Based+on+the+Difference+Operator+which+Includes+the+%28p%2C%C2%A0q%29-Gamma+Function+and+Related+Approximation+Theorems&rft.jtitle=Resultate+der+Mathematik&rft.au=Kadak%2C+U%C4%9Fur&rft.au=Mohiuddine%2C+S.+A.&rft.date=2018-03-01&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=73&rft.issue=1&rft_id=info:doi/10.1007%2Fs00025-018-0789-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00025_018_0789_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon