On global error control in nested implicit Runge-Kutta methods of the gauss type

Automatic global error control based on a combined control of step size and order presented by Kulikov and Khrustaleva in 2008 is investigated. Special attention is given to the efficiency of computation, because the implicit extrapolation based on multistage implicit Runge-Kutta schemes may be expe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical analysis and applications Ročník 4; číslo 3; s. 199 - 209
Hlavní autoři: Kulikov, G. Yu, Kuznetsov, E. B., Khrustaleva, E. Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.07.2011
Témata:
ISSN:1995-4239, 1995-4247
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Automatic global error control based on a combined control of step size and order presented by Kulikov and Khrustaleva in 2008 is investigated. Special attention is given to the efficiency of computation, because the implicit extrapolation based on multistage implicit Runge-Kutta schemes may be expensive. Specifically, we discuss a technique of global error estimation and control in order to compute a numerical solution satisfying the user-supplied accuracy conditions (in exact arithmetic) automatically. The theoretical results of this paper are confirmed by numerical experiments on test problems.
AbstractList Automatic global error control based on a combined control of step size and order presented by Kulikov and Khrustaleva in 2008 is investigated. Special attention is given to the efficiency of computation, because the implicit extrapolation based on multistage implicit Runge-Kutta schemes may be expensive. Specifically, we discuss a technique of global error estimation and control in order to compute a numerical solution satisfying the user-supplied accuracy conditions (in exact arithmetic) automatically. The theoretical results of this paper are confirmed by numerical experiments on test problems.
Author Kulikov, G. Yu
Khrustaleva, E. Yu
Kuznetsov, E. B.
Author_xml – sequence: 1
  givenname: G. Yu
  surname: Kulikov
  fullname: Kulikov, G. Yu
  email: gkulikov@math.ist.utl.pt, kulgyu@yahoo.com
  organization: CEMAT, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais
– sequence: 2
  givenname: E. B.
  surname: Kuznetsov
  fullname: Kuznetsov, E. B.
  organization: Moscow Aviation Institute
– sequence: 3
  givenname: E. Yu
  surname: Khrustaleva
  fullname: Khrustaleva, E. Yu
  organization: Ulyanovsk State University
BookMark eNp9kMtOwzAQRS0EEqX0A9j5BwJ-xvESVbxEpSIe68hJxq2r1K5sZ9G_J1URC5A6mxnNzBnduVfo3AcPCN1QckspF3cfVGspGNeUEk4Ik2docmgVggl1_ltzfYlmKW3IGJypSpQT9Lb0eNWHxvQYYgwRt8HnGHrsPPaQMnTYbXe9a13G74NfQfE65GzwFvI6dAkHi_Ma8MoMKeG838E1urCmTzD7yVP09fjwOX8uFsunl_n9omhZVeWirDouupKA5S1ttG0oB0mZ5BJU1VaStkILAKKh1OOsrGSjG9MQqxR0yjI-Rep4t40hpQi2HiWa7A7yjetrSuqDN_U_b0aS_iF30W1N3J9k2JFJ4-7oQqw3YYh-fPAE9A00hXaw
CitedBy_id crossref_primary_10_1134_S0965542515030100
crossref_primary_10_1134_S0965542514040071
crossref_primary_10_1134_S2070048213060124
crossref_primary_10_1134_S0965542518030119
Cites_doi 10.1016/S0168-9274(99)00126-9
10.1007/11758501_104
10.1023/B:BITN.0000046811.70614.38
10.1093/imanum/2.2.211
10.1002/0470868279
10.1007/BF01933583
10.1515/rnam.2007.029
10.1007/BF01947741
10.1007/BF01963532
10.1093/imamat/19.4.455
10.1137/0714069
10.1007/BF01932774
10.1137/090764840
10.1093/imamat/20.4.425
10.1007/BF01932722
10.1016/j.apnum.2008.03.019
10.1137/0714068
10.1515/RJNAMM.2009.009
10.1007/BF01932265
10.1137/0727044
10.1007/978-3-540-72584-8_18
10.1090/S0025-5718-1974-0331793-2
10.1007/BF01932291
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2011
Copyright_xml – notice: Pleiades Publishing, Ltd. 2011
DBID AAYXX
CITATION
DOI 10.1134/S1995423911030025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1995-4247
EndPage 209
ExternalDocumentID 10_1134_S1995423911030025
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
123
1N0
29N
2JN
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
5VS
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c288t-68d34d60ef3c1b9fb13e512535e78c851c494ee09e69b13685b9bab0f77ed7f23
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000219614000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1995-4239
IngestDate Sat Nov 29 06:43:40 EST 2025
Tue Nov 18 21:30:22 EST 2025
Fri Feb 21 02:33:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords implicit Runge-Kutta formulas
efficient implementation
nested implicit schemes of the Gauss type
global error estimation and control
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-68d34d60ef3c1b9fb13e512535e78c851c494ee09e69b13685b9bab0f77ed7f23
PageCount 11
ParticipantIDs crossref_citationtrail_10_1134_S1995423911030025
crossref_primary_10_1134_S1995423911030025
springer_journals_10_1134_S1995423911030025
PublicationCentury 2000
PublicationDate 20110700
2011-7-00
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 7
  year: 2011
  text: 20110700
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Numerical analysis and applications
PublicationTitleAbbrev Numer. Analys. Appl
PublicationYear 2011
Publisher SP MAIK Nauka/Interperiodica
Publisher_xml – name: SP MAIK Nauka/Interperiodica
References KulikovG.Yu.MerkulovA.I.ShindinS.K.Asymptotic Error Estimate for General Newton-Type Methods and Its Application to Differential EquationsRuss. J. Numer. Anal. Math. Model.2007226567590237503210.1515/rnam.2007.0291145.65033
ButcherJ.C.On the Implementation of Implicit Runge-Kutta MethodsBIT19761623724048874610.1007/BF019322650336.65037
NørsettS.P.WolfbrandtA.Attainable Order of Rational Approximations to the Exponential Function with Only Real PolesBIT19771720020810.1007/BF01932291
DekkerK.VerverJ.Ustoichivost’ metodov Runge-Kutty dlya zhyostkikh nelineinykh differentsialnykh uravnenii1988MoscowMir(Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations)
BickartT.A.An Efficient Solution Process for Implicit Runge-Kutta MethodsSIAM J. Numer. Anal.1977141022102745889310.1137/07140690368.65037
HairerE.NersettS.WannerG.Reshenie obyknovennykh differentsialnykh uravnenii. Nezhostkie zadachi1990MoscowMir(Solving Ordinary Differential Equations: Nonstiff Problems)
KulikovG.Yu.Automatic Error Control in the Gauss-Type Nested Implicit Runge-Kutta Formula of Order 6Russ. J. Numer. Anal. Math. Model.2009242123144252273010.1515/RJNAMM.2009.0091168.65368
AltR.Methodes A-Stables pour l’Integration de Systemes Differentiels Mal Conditionnes1971ParisUniversite Paris
Dahlquist, G., Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Trans. Royal Inst. Technol., 1959, no. 130, pp. 1–87.
AlexanderR.Diagonally Implicit Runge-Kutta Methods for Stiff ODEsSIAM J. Numer. Anal.1977141006102445889010.1137/07140680374.65038
ButcherJ.C.Numerical Methods for Ordinary Differential Equations2003ChichesterWiley10.1002/04708682791040.65057
HairerE.WannerG.Reshenie obyknovennykh differentsialnykh uravnenii. Zhostkie i differentsialno-algebraicheskie zadachi1999MoscowMir(Solving Ordinary Differential Equations: Stiff and Differential-Algebraic Problems)
ButcherJ.C.ChenD.J.A New Type of Singly Implicit Runge-Kutta MethodsAppl. Numer. Math.200034179188177042210.1016/S0168-9274(99)00126-90954.65058
van BokhovenW.M.Efficient Higher Order Implicit One-Step Methods for Integration of Stiff Differential EquationsBIT198020344356997410.1007/BF019335830448.65047
CrouzeixM.Sur l’Approximation des Equations Differentielles Operationnelles Lineaires par de Methodes de Runge-Kutta1975ParisUniversite Paris
KværnøA.Singly Diagonally Implicit Runge-Kutta Methods with an Explicit First StageBIT200444489502210601210.1023/B:BITN.0000046811.70614.38
ProtheroA.RobinsonA.On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential EquationsMath. Comp.19742414516233179310.1090/S0025-5718-1974-0331793-2
KulikovG.Yu.WeinerR.Variable-Stepsize Interpolating Explicit Parallel Peer Methods with Inherent Global Error ControlSIAM J. Sci. Comp.201032416951723267129310.1137/0907648401215.65125
KurdiM.Stable High Order Methods for Time Discretization of Stiff Differential Equations1974CaliforniaUniversity of California
CashJ.R.On a Class of Implicit Runge-Kutta ProceduresJ. Inst. Math. Appl.19771945547043659710.1093/imamat/19.4.4550364.65051
NørsettS.P.Runge-Kutta Methods with Multiple Real Eigenvalue OnlyBIT19761638839310.1007/BF01932722
Kulikov, G.Yu. and Shindin, S.K., On a Family of Cheap Symmetric One-Step Methods of Order Four, Alexandrov, V.N. et al., Eds., Computational Science-ICCS 2006, 6th Int. Conf., Reading, UK, May 28–31, 2006, part 1, 2006, vol. 3991, pp. 781–785.
KulikovG.Yu.KhrustalevaE.Yu.On Automatic Control of Mesh Size and Order in Implicit Single-Step Extrapolation MethodsSib. Zh. Vych. Mat. Mat. Fiz.2008489158016062500112
BurrageK.A Special Family of Runge-Kutta Methods for Solving Stiff Differential EquationsBIT197818224148345810.1007/BF019477410384.65034
CashJ.R.SinghalA.Mono-Implicit Runge-Kutta Formulae for the Numerical Integration of Stiff Differential SystemsIMA J. Numer. Anal.1982221122766859310.1093/imanum/2.2.2110488.65031
Nørsett, S.P., Semi-Explicit Runge-Kutta Methods, Report, Trondheim: University of Trondheim, 1974, no. 6/74.
ButcherJ.C.CashJ.R.Towards Efficient Runge-Kutta Methods for Stiff SystemsSIAM J. Numer. Anal.199027753761104126110.1137/07270440702.65072
KulikovG.Yu.ShindinS.K.Adaptive Nested Implicit Runge-Kutta Formulas of Gauss TypeAppl. Numer. Math.200959707722249228610.1016/j.apnum.2008.03.0191161.65055
Kulikov, G.Yu. and Shindin, S.K., Numerical Tests with Gauss-Type Nested Implicit Runge-Kutta Formulas, Y Shi et al., Eds., Computational Science-ICCS 2007, 7th Int. Conf., Beijing, China, May 27–30, 2007, part 1, 2007, vol. 4487, pp. 136–143.
BurrageK.ButcherJ.C.ChipmanF.H.An Implementation of Singly Implicit Runge-Kutta MethodsBIT19802032634059521310.1007/BF019327740456.65040
DahlquistG.A Special Stability Problem for Linear Multistep MethodsBIT19633274317047710.1007/BF019635320123.11703
CashJ.R.On a Note of the Computational Aspects of a Class of Implicit Runge-Kutta ProceduresJ. Inst. Math. Appl.19772042544145540810.1093/imamat/20.4.4250386.65033
G.Yu. Kulikov (4092_CR4) 2009; 59
G.Yu. Kulikov (4092_CR2) 2007; 22
R. Alexander (4092_CR16) 1977; 14
W.M. Bokhoven van (4092_CR31) 1980; 20
J.C. Butcher (4092_CR9) 2003
M. Kurdi (4092_CR19) 1974
E. Hairer (4092_CR8) 1999
4092_CR21
K. Burrage (4092_CR24) 1980; 20
G. Dahlquist (4092_CR13) 1963; 3
4092_CR1
A. Prothero (4092_CR22) 1974; 24
4092_CR3
J.C. Butcher (4092_CR26) 1990; 27
J.R. Cash (4092_CR29) 1977; 19
A. Kværnø (4092_CR20) 2004; 44
J.R. Cash (4092_CR30) 1977; 20
G.Yu. Kulikov (4092_CR10) 2008; 48
R. Alt (4092_CR17) 1971
J.C. Butcher (4092_CR27) 2000; 34
S.P. Nørsett (4092_CR28) 1977; 17
M. Crouzeix (4092_CR18) 1975
S.P. Nørsett (4092_CR25) 1976; 16
E. Hairer (4092_CR7) 1990
4092_CR12
K. Burrage (4092_CR23) 1978; 18
J.R. Cash (4092_CR32) 1982; 2
G.Yu. Kulikov (4092_CR5) 2009; 24
K. Dekker (4092_CR6) 1988
J.C. Butcher (4092_CR14) 1976; 16
T.A. Bickart (4092_CR15) 1977; 14
G.Yu. Kulikov (4092_CR11) 2010; 32
References_xml – reference: KurdiM.Stable High Order Methods for Time Discretization of Stiff Differential Equations1974CaliforniaUniversity of California
– reference: ProtheroA.RobinsonA.On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential EquationsMath. Comp.19742414516233179310.1090/S0025-5718-1974-0331793-2
– reference: NørsettS.P.Runge-Kutta Methods with Multiple Real Eigenvalue OnlyBIT19761638839310.1007/BF01932722
– reference: BickartT.A.An Efficient Solution Process for Implicit Runge-Kutta MethodsSIAM J. Numer. Anal.1977141022102745889310.1137/07140690368.65037
– reference: KulikovG.Yu.Automatic Error Control in the Gauss-Type Nested Implicit Runge-Kutta Formula of Order 6Russ. J. Numer. Anal. Math. Model.2009242123144252273010.1515/RJNAMM.2009.0091168.65368
– reference: HairerE.NersettS.WannerG.Reshenie obyknovennykh differentsialnykh uravnenii. Nezhostkie zadachi1990MoscowMir(Solving Ordinary Differential Equations: Nonstiff Problems)
– reference: Nørsett, S.P., Semi-Explicit Runge-Kutta Methods, Report, Trondheim: University of Trondheim, 1974, no. 6/74.
– reference: BurrageK.A Special Family of Runge-Kutta Methods for Solving Stiff Differential EquationsBIT197818224148345810.1007/BF019477410384.65034
– reference: Kulikov, G.Yu. and Shindin, S.K., Numerical Tests with Gauss-Type Nested Implicit Runge-Kutta Formulas, Y Shi et al., Eds., Computational Science-ICCS 2007, 7th Int. Conf., Beijing, China, May 27–30, 2007, part 1, 2007, vol. 4487, pp. 136–143.
– reference: van BokhovenW.M.Efficient Higher Order Implicit One-Step Methods for Integration of Stiff Differential EquationsBIT198020344356997410.1007/BF019335830448.65047
– reference: BurrageK.ButcherJ.C.ChipmanF.H.An Implementation of Singly Implicit Runge-Kutta MethodsBIT19802032634059521310.1007/BF019327740456.65040
– reference: AltR.Methodes A-Stables pour l’Integration de Systemes Differentiels Mal Conditionnes1971ParisUniversite Paris
– reference: KulikovG.Yu.MerkulovA.I.ShindinS.K.Asymptotic Error Estimate for General Newton-Type Methods and Its Application to Differential EquationsRuss. J. Numer. Anal. Math. Model.2007226567590237503210.1515/rnam.2007.0291145.65033
– reference: Dahlquist, G., Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Trans. Royal Inst. Technol., 1959, no. 130, pp. 1–87.
– reference: HairerE.WannerG.Reshenie obyknovennykh differentsialnykh uravnenii. Zhostkie i differentsialno-algebraicheskie zadachi1999MoscowMir(Solving Ordinary Differential Equations: Stiff and Differential-Algebraic Problems)
– reference: CrouzeixM.Sur l’Approximation des Equations Differentielles Operationnelles Lineaires par de Methodes de Runge-Kutta1975ParisUniversite Paris
– reference: ButcherJ.C.CashJ.R.Towards Efficient Runge-Kutta Methods for Stiff SystemsSIAM J. Numer. Anal.199027753761104126110.1137/07270440702.65072
– reference: ButcherJ.C.On the Implementation of Implicit Runge-Kutta MethodsBIT19761623724048874610.1007/BF019322650336.65037
– reference: KulikovG.Yu.ShindinS.K.Adaptive Nested Implicit Runge-Kutta Formulas of Gauss TypeAppl. Numer. Math.200959707722249228610.1016/j.apnum.2008.03.0191161.65055
– reference: ButcherJ.C.ChenD.J.A New Type of Singly Implicit Runge-Kutta MethodsAppl. Numer. Math.200034179188177042210.1016/S0168-9274(99)00126-90954.65058
– reference: NørsettS.P.WolfbrandtA.Attainable Order of Rational Approximations to the Exponential Function with Only Real PolesBIT19771720020810.1007/BF01932291
– reference: DahlquistG.A Special Stability Problem for Linear Multistep MethodsBIT19633274317047710.1007/BF019635320123.11703
– reference: CashJ.R.On a Note of the Computational Aspects of a Class of Implicit Runge-Kutta ProceduresJ. Inst. Math. Appl.19772042544145540810.1093/imamat/20.4.4250386.65033
– reference: KulikovG.Yu.KhrustalevaE.Yu.On Automatic Control of Mesh Size and Order in Implicit Single-Step Extrapolation MethodsSib. Zh. Vych. Mat. Mat. Fiz.2008489158016062500112
– reference: KværnøA.Singly Diagonally Implicit Runge-Kutta Methods with an Explicit First StageBIT200444489502210601210.1023/B:BITN.0000046811.70614.38
– reference: CashJ.R.SinghalA.Mono-Implicit Runge-Kutta Formulae for the Numerical Integration of Stiff Differential SystemsIMA J. Numer. Anal.1982221122766859310.1093/imanum/2.2.2110488.65031
– reference: Kulikov, G.Yu. and Shindin, S.K., On a Family of Cheap Symmetric One-Step Methods of Order Four, Alexandrov, V.N. et al., Eds., Computational Science-ICCS 2006, 6th Int. Conf., Reading, UK, May 28–31, 2006, part 1, 2006, vol. 3991, pp. 781–785.
– reference: CashJ.R.On a Class of Implicit Runge-Kutta ProceduresJ. Inst. Math. Appl.19771945547043659710.1093/imamat/19.4.4550364.65051
– reference: DekkerK.VerverJ.Ustoichivost’ metodov Runge-Kutty dlya zhyostkikh nelineinykh differentsialnykh uravnenii1988MoscowMir(Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations)
– reference: KulikovG.Yu.WeinerR.Variable-Stepsize Interpolating Explicit Parallel Peer Methods with Inherent Global Error ControlSIAM J. Sci. Comp.201032416951723267129310.1137/0907648401215.65125
– reference: ButcherJ.C.Numerical Methods for Ordinary Differential Equations2003ChichesterWiley10.1002/04708682791040.65057
– reference: AlexanderR.Diagonally Implicit Runge-Kutta Methods for Stiff ODEsSIAM J. Numer. Anal.1977141006102445889010.1137/07140680374.65038
– volume: 34
  start-page: 179
  year: 2000
  ident: 4092_CR27
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(99)00126-9
– volume-title: Stable High Order Methods for Time Discretization of Stiff Differential Equations
  year: 1974
  ident: 4092_CR19
– ident: 4092_CR12
– ident: 4092_CR1
  doi: 10.1007/11758501_104
– volume: 44
  start-page: 489
  year: 2004
  ident: 4092_CR20
  publication-title: BIT
  doi: 10.1023/B:BITN.0000046811.70614.38
– volume: 2
  start-page: 211
  year: 1982
  ident: 4092_CR32
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/2.2.211
– volume-title: Numerical Methods for Ordinary Differential Equations
  year: 2003
  ident: 4092_CR9
  doi: 10.1002/0470868279
– volume: 20
  start-page: 34
  year: 1980
  ident: 4092_CR31
  publication-title: BIT
  doi: 10.1007/BF01933583
– volume: 22
  start-page: 567
  issue: 6
  year: 2007
  ident: 4092_CR2
  publication-title: Russ. J. Numer. Anal. Math. Model.
  doi: 10.1515/rnam.2007.029
– ident: 4092_CR21
– volume: 18
  start-page: 22
  year: 1978
  ident: 4092_CR23
  publication-title: BIT
  doi: 10.1007/BF01947741
– volume: 3
  start-page: 27
  year: 1963
  ident: 4092_CR13
  publication-title: BIT
  doi: 10.1007/BF01963532
– volume: 19
  start-page: 455
  year: 1977
  ident: 4092_CR29
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/19.4.455
– volume-title: Methodes A-Stables pour l’Integration de Systemes Differentiels Mal Conditionnes
  year: 1971
  ident: 4092_CR17
– volume: 14
  start-page: 1022
  year: 1977
  ident: 4092_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0714069
– volume: 20
  start-page: 326
  year: 1980
  ident: 4092_CR24
  publication-title: BIT
  doi: 10.1007/BF01932774
– volume: 32
  start-page: 1695
  issue: 4
  year: 2010
  ident: 4092_CR11
  publication-title: SIAM J. Sci. Comp.
  doi: 10.1137/090764840
– volume: 20
  start-page: 425
  year: 1977
  ident: 4092_CR30
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/20.4.425
– volume: 16
  start-page: 388
  year: 1976
  ident: 4092_CR25
  publication-title: BIT
  doi: 10.1007/BF01932722
– volume-title: Reshenie obyknovennykh differentsialnykh uravnenii. Zhostkie i differentsialno-algebraicheskie zadachi
  year: 1999
  ident: 4092_CR8
– volume-title: Reshenie obyknovennykh differentsialnykh uravnenii. Nezhostkie zadachi
  year: 1990
  ident: 4092_CR7
– volume: 59
  start-page: 707
  year: 2009
  ident: 4092_CR4
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.03.019
– volume: 14
  start-page: 1006
  year: 1977
  ident: 4092_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0714068
– volume: 24
  start-page: 123
  issue: 2
  year: 2009
  ident: 4092_CR5
  publication-title: Russ. J. Numer. Anal. Math. Model.
  doi: 10.1515/RJNAMM.2009.009
– volume: 16
  start-page: 237
  year: 1976
  ident: 4092_CR14
  publication-title: BIT
  doi: 10.1007/BF01932265
– volume: 27
  start-page: 753
  year: 1990
  ident: 4092_CR26
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727044
– ident: 4092_CR3
  doi: 10.1007/978-3-540-72584-8_18
– volume-title: Ustoichivost’ metodov Runge-Kutty dlya zhyostkikh nelineinykh differentsialnykh uravnenii
  year: 1988
  ident: 4092_CR6
– volume: 24
  start-page: 145
  year: 1974
  ident: 4092_CR22
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1974-0331793-2
– volume: 48
  start-page: 1580
  issue: 9
  year: 2008
  ident: 4092_CR10
  publication-title: Sib. Zh. Vych. Mat. Mat. Fiz.
– volume-title: Sur l’Approximation des Equations Differentielles Operationnelles Lineaires par de Methodes de Runge-Kutta
  year: 1975
  ident: 4092_CR18
– volume: 17
  start-page: 200
  year: 1977
  ident: 4092_CR28
  publication-title: BIT
  doi: 10.1007/BF01932291
SSID ssj0000327846
Score 1.8115689
Snippet Automatic global error control based on a combined control of step size and order presented by Kulikov and Khrustaleva in 2008 is investigated. Special...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Mathematics
Mathematics and Statistics
Numerical Analysis
Title On global error control in nested implicit Runge-Kutta methods of the gauss type
URI https://link.springer.com/article/10.1134/S1995423911030025
Volume 4
WOSCitedRecordID wos000219614000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1995-4247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86PejBx1ScL3LwpBTb5tmjiEMQ59hUditJl0hBOmk6_36TNh0MH6CXXpqENsmX78v3-P0AOMeRkBmLdBAhIgJMEQuSmEh7a6UojqR9qIZsgg0GfDJJhr6O27TZ7m1Isj6pG94RfDV2xcQOri5yzFhWVa-CNavtuJPG0fhl4VgJkYul1VVFrvrY9fDRzG9HWdZHy8HQWsf0t__1dTtgy5uU8LrZA7tgRRVdsO3NS-iF13TB5sMCotXsgeFjARs0EKjKclZCn7QO8wIWtRMU5nW2eV7BkT0RVHA_ryoBG8ppA2ca2tHgq5gbA50jdx8892-fbu4CT68QZDHnVUD5FOEpDZVGWSQTLSOkrPoniCjGM2uJZTjBSoWJool9RzmRiRQy1IypKdMxOgCdYlaoQwCZJJLb39cCaSwYktboIoLyxKHTUUF6IGwnOc089rijwHhL6zsIwumX-euBi0WX9wZ447fGl-2qpF4Gzc-tj_7U-hhsNH5kl6J7AjpVOVenYD37qHJTntV77xMlf84N
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQHp1NxXvPgk1JsmzRpH0Uck10c25S9laRLpSCdtJ2_36TNBsML6EtfehLa3M7JuXwfwBVxuIiYE1sO9rhFKGZW4HpC3Vopdh2hHrIim2D9vj-ZBANTx50vst0XIcnypK54R8jtSBcTa7g6RzNjKVW9DhtEKSydxzccvSwdKzbWsbSyqkhXH-sWJpr5bS-r-mg1GFrqmFb9X1-3B7vGpER31RrYhzWZNqBuzEtkNm_egJ3eEqI1P4DBU4oqNBAks2yWIZO0jpIUpaUTFCVltnlSoKE6EaTVmRcFRxXldI5mMVK9oVc-z3OkHbmH8Nx6GN-3LUOvYEWu7xcW9aeYTKktYxw5IoiFg6VS_x72JPMjZYlFJCBS2oGkgXpHfU8Eggs7ZkxOWeziI6ils1QeA2LCE776_ZjjmHCGhTK6PE79QKPTUe41wV4MchgZ7HFNgfEWlncQTMIv49eE62WT9wp44zfhm8WshGYP5j9Ln_xJ-hK22uNeN-w-9junsF35lHW67hnUimwuz2Ez-iiSPLso1-En15_Q8Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4MwGH6j0xg9OJ0a52cPnjRkQAuFo1EXzXQuTs1upIXWkBi2APP320K3ZPEjMV648LaB0vJ-Pw_AGXEYj6kjLQd7zCI-plboelx5rT52Ha4uoiaboP1-MBqFA8NzWsyq3WcpybqnQaM0ZWVnkkjDQUI6Q91YrKHrHM2SpdT2MqwQzRmk3fXh6zzIYmOdV6s6jHQnsh5hMpvfzrKomxYTo5W-6Tb__aRbsGlMTXRZ741tWBJZC5rG7ETmUBct2HiYQ7cWOzB4zFCNEoJEno9zZIrZUZqhrAqOorSqQk9L9KT-FMLqTcuSoZqKukBjidRs6I1NiwLpAO8uvHRvnq9uLUO7YMVuEJSWHySYJL4tJI4dHkruYKHMAg97ggaxstBiEhIh7FD4obrnBx4POeO2pFQkVLp4DxrZOBP7gCj3eKBeXzIsCaOYK2PMY34QatQ6n3ltsGcLHsUGk1xTY7xHlW-CSfRl_dpwPh8yqQE5fhO-mH2hyJzN4mfpgz9Jn8La4Lob3d_1e4ewXoeadRXvETTKfCqOYTX-KNMiP6m25CcZ5dnV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+global+error+control+in+nested+implicit+Runge-Kutta+methods+of+the+gauss+type&rft.jtitle=Numerical+analysis+and+applications&rft.au=Kulikov%2C+G.+Yu&rft.au=Kuznetsov%2C+E.+B.&rft.au=Khrustaleva%2C+E.+Yu&rft.date=2011-07-01&rft.pub=SP+MAIK+Nauka%2FInterperiodica&rft.issn=1995-4239&rft.eissn=1995-4247&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1134%2FS1995423911030025&rft.externalDocID=10_1134_S1995423911030025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-4239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-4239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-4239&client=summon