ParamILS: An Automatic Algorithm Configuration Framework

The identification of performance-optimizing parameter settings is an important part of the development and application of algorithms. We describe an automatic framework for this algorithm configuration problem. More formally, we provide methods for optimizing a target algorithm’s performance on a g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of artificial intelligence research Ročník 36; s. 267 - 306
Hlavní autoři: Hutter, F., Hoos, H. H., Leyton-Brown, K., Stuetzle, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Francisco AI Access Foundation 30.10.2009
Témata:
ISSN:1076-9757, 1076-9757, 1943-5037
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The identification of performance-optimizing parameter settings is an important part of the development and application of algorithms. We describe an automatic framework for this algorithm configuration problem. More formally, we provide methods for optimizing a target algorithm’s performance on a given class of problem instances by varying a set of ordinal and/or categorical parameters. We review a family of local-search-based algorithm configuration procedures and present novel techniques for accelerating them by adaptively limiting the time spent for evaluating individual configurations. We describe the results of a comprehensive experimental evaluation of our methods, based on the configuration of prominent complete and incomplete algorithms for SAT. We also present what is, to our knowledge, the first published work on automatically configuring the CPLEX mixed integer programming solver. All the algorithms we considered had default parameter settings that were manually identified with considerable effort. Nevertheless, using our automated algorithm configuration procedures, we achieved substantial and consistent performance improvements.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1076-9757
1076-9757
1943-5037
DOI:10.1613/jair.2861