Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems

The purpose of this paper is to consider the set-valued optimization problem in Asplund spaces without convexity assumption. By a scalarization function introduced by Tammer and Weidner (J Optim Theory Appl 67:297–320, 1990 ), we obtain the Lagrangian condition for approximate solutions on set-value...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 7; číslo 8; s. 1847 - 1856
Hlavní autoři: Long, X. J., Li, X. B., Zeng, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2013
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The purpose of this paper is to consider the set-valued optimization problem in Asplund spaces without convexity assumption. By a scalarization function introduced by Tammer and Weidner (J Optim Theory Appl 67:297–320, 1990 ), we obtain the Lagrangian condition for approximate solutions on set-valued optimization problems in terms of the Mordukhovich coderivative.
AbstractList The purpose of this paper is to consider the set-valued optimization problem in Asplund spaces without convexity assumption. By a scalarization function introduced by Tammer and Weidner (J Optim Theory Appl 67:297–320, 1990 ), we obtain the Lagrangian condition for approximate solutions on set-valued optimization problems in terms of the Mordukhovich coderivative.
Author Zeng, J.
Li, X. B.
Long, X. J.
Author_xml – sequence: 1
  givenname: X. J.
  surname: Long
  fullname: Long, X. J.
  email: xianjunlong@hotmail.com
  organization: College of Mathematics and Statistics, Chongqing Technology and Business University
– sequence: 2
  givenname: X. B.
  surname: Li
  fullname: Li, X. B.
  organization: College of Science, Chongqing JiaoTong University
– sequence: 3
  givenname: J.
  surname: Zeng
  fullname: Zeng, J.
  organization: College of Mathematics and Statistics, Chongqing Technology and Business University
BookMark eNp9kE1OwzAQhS1UJNrCAdj5AoaxkzjJElX8SZXYwBJZjjupXKV2ZKdV6elxCWLBoqsZad43M-_NyMR5h4TccrjjAOV95LyogQEXDApRsuMFmfJKCpbnFUz--lJckVmMGwDJeV1PyedSr4N2a6sdNd6t7GC9i7T1geq-D_5gt3pAGn23Gyfe0XQ6Sfd4oBEHttfdDlfU94Pd2qM-qWgCmw638ZpctrqLePNb5-Tj6fF98cKWb8-vi4clM6KqBia5XIHOhZYFykyDxFy0QramNgZMBoCNbrMK6xoKNDnPoDRVJQ0vsG6aLMvmpBz3muBjDNgqY4efV4agbac4qFNKakxJpZTUKSV1TCT_R_YhWQ5fZxkxMjFp3RqD2vhdcMngGegb4Uh_mg
CitedBy_id crossref_primary_10_1007_s11590_021_01806_0
crossref_primary_10_1186_s13660_015_0839_5
crossref_primary_10_1007_s10898_019_00864_0
crossref_primary_10_1007_s40324_016_0099_4
crossref_primary_10_1186_s13660_015_0875_1
crossref_primary_10_1007_s40305_016_0140_4
crossref_primary_10_1007_s40305_017_0167_1
crossref_primary_10_1007_s10255_019_0836_4
Cites_doi 10.1080/02331939708844332
10.1016/j.na.2011.09.024
10.1287/moor.4.1.79
10.1007/BF00941179
10.1007/978-3-540-24828-6
10.1007/BF00940762
10.1137/060651860
10.1007/BF00936165
10.1007/s00186-005-0007-7
10.1007/BF00940478
10.1080/02331930903531527
10.1007/s10957-011-9891-6
10.1007/s10898-008-9336-4
10.1016/j.jmaa.2005.03.011
10.1016/j.na.2011.03.015
10.1016/S0022-247X(03)00360-3
10.1007/s10898-009-9452-9
10.1007/s10107-004-0569-9
10.1007/s10957-009-9609-1
10.1007/s00186-006-0079-z
10.1007/978-3-642-02431-3
10.1007/s10107-008-0249-2
10.1007/s10957-010-9657-6
10.1007/3-540-31247-1
10.1007/978-1-4419-0158-3_21
ContentType Journal Article
Copyright Springer-Verlag 2012
Copyright_xml – notice: Springer-Verlag 2012
DBID AAYXX
CITATION
DOI 10.1007/s11590-012-0527-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 1856
ExternalDocumentID 10_1007_s11590_012_0527_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-616d0a42a65e63a06e42f26fc9cc0c300ebaf38e9905ec41307c886c15e9bb333
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327439600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4472
IngestDate Sat Nov 29 02:44:06 EST 2025
Tue Nov 18 21:58:14 EST 2025
Fri Feb 21 02:42:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Mordukhovich coderivative
Lagrangian condition
Nonconvex set-valued optimization
Approximate solution
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-616d0a42a65e63a06e42f26fc9cc0c300ebaf38e9905ec41307c886c15e9bb333
PageCount 10
ParticipantIDs crossref_citationtrail_10_1007_s11590_012_0527_z
crossref_primary_10_1007_s11590_012_0527_z
springer_journals_10_1007_s11590_012_0527_z
PublicationCentury 2000
PublicationDate 20131200
2013-12-00
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Mordukhovich (CR24) 2006
Dutta, Tammer (CR10) 2006; 64
Gao, Hou, Yang (CR11) 2012; 152
Taa (CR27) 2005; 62
Zheng, Ng (CR31) 2006; 17
Göpfert, Riahi, Tammer, Zălinescu (CR14) 2003
Bao, Mordukhovich (CR2) 2009; 43
Bao, Mordukhovich (CR3) 2010; 122
Chen, Huang, Yang (CR5) 2005
CR16
Ha (CR17) 2012; 75
Luc (CR22) 1989
Loridan (CR21) 1984; 43
Gong, Dong, Wang (CR13) 2003; 284
Amahroq, Taa (CR1) 1997; 41
Durea, Dutta, Tammer (CR8) 2010; 145
Durea, Strugariu (CR9) 2011; 60
Jahn (CR19) 2004
Mordukhovich (CR23) 2006
Hiriart-Urruty (CR18) 1979; 4
CR6
Clarke (CR7) 1983
Gerth, Weidner (CR12) 1990; 67
Rockafellar, Wets (CR26) 1998
Vályi (CR28) 1987; 55
Kutateladze (CR20) 1979; 20
Bao, Tammer (CR4) 2012; 75
Ha (CR15) 2005; 311
Qiu, Yang (CR25) 2010; 47
Zheng, Ng (CR30) 2005; 104
White (CR29) 1986; 49
J. Jahn (527_CR19) 2004
X.Y. Zheng (527_CR30) 2005; 104
T.Q. Bao (527_CR2) 2009; 43
R.T. Rockafellar (527_CR26) 1998
T.X.D. Ha (527_CR15) 2005; 311
Y. Gao (527_CR11) 2012; 152
D.J. White (527_CR29) 1986; 49
F.H. Clarke (527_CR7) 1983
A. Göpfert (527_CR14) 2003
G.Y. Chen (527_CR5) 2005
B.S. Mordukhovich (527_CR24) 2006
C. Gerth (527_CR12) 1990; 67
527_CR6
D.T. Luc (527_CR22) 1989
I. Vályi (527_CR28) 1987; 55
X.Y. Zheng (527_CR31) 2006; 17
T.X.D. Ha (527_CR17) 2012; 75
X.H. Gong (527_CR13) 2003; 284
T.Q. Bao (527_CR4) 2012; 75
T. Amahroq (527_CR1) 1997; 41
A. Taa (527_CR27) 2005; 62
T.Q. Bao (527_CR3) 2010; 122
Q.S. Qiu (527_CR25) 2010; 47
J. Durea (527_CR8) 2010; 145
J. Durea (527_CR9) 2011; 60
527_CR16
J.B. Hiriart-Urruty (527_CR18) 1979; 4
S.S. Kutateladze (527_CR20) 1979; 20
Loridan (527_CR21) 1984; 43
B.S. Mordukhovich (527_CR23) 2006
J. Dutta (527_CR10) 2006; 64
References_xml – volume: 41
  start-page: 159
  year: 1997
  end-page: 172
  ident: CR1
  article-title: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems
  publication-title: Optimization.
  doi: 10.1080/02331939708844332
– volume: 75
  start-page: 1089
  year: 2012
  end-page: 1103
  ident: CR4
  article-title: Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.09.024
– volume: 4
  start-page: 79
  year: 1979
  end-page: 97
  ident: CR18
  article-title: Tangent cones, generalized gradients and mathematical programming in Banach spaces
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.4.1.79
– volume: 55
  start-page: 435
  year: 1987
  end-page: 448
  ident: CR28
  article-title: Approximate saddle-point theroems in vector optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941179
– year: 2004
  ident: CR19
  publication-title: Vector Optimization: Theory, Applications, and Extensions
  doi: 10.1007/978-3-540-24828-6
– ident: CR16
– volume: 49
  start-page: 319
  year: 1986
  end-page: 337
  ident: CR29
  article-title: Epsilon efficiency
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940762
– volume: 17
  start-page: 1154
  year: 2006
  end-page: 1175
  ident: CR31
  article-title: The Lagrange multiplier rule for multifunctions in Banach spaces
  publication-title: SIAM J. Optim.
  doi: 10.1137/060651860
– volume: 43
  start-page: 265
  year: 1984
  end-page: 276
  ident: CR21
  article-title: -Solutions in vector minimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00936165
– volume: 62
  start-page: 187
  year: 2005
  end-page: 209
  ident: CR27
  article-title: -Subdifferentials of set-valued maps and -weak Pareto optimality for multiobjective optimization
  publication-title: Math. Meth. Oper. Res.
  doi: 10.1007/s00186-005-0007-7
– ident: CR6
– year: 2003
  ident: CR14
  publication-title: Variational Methods in Partially Ordered Spaces
– volume: 67
  start-page: 297
  year: 1990
  end-page: 320
  ident: CR12
  article-title: Nonconvex separation theorems and some applications in vector optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940478
– volume: 60
  start-page: 575
  year: 2011
  end-page: 591
  ident: CR9
  article-title: On some Fermat rules for set-valued optimization problems
  publication-title: Optimization.
  doi: 10.1080/02331930903531527
– volume: 152
  start-page: 97
  year: 2012
  end-page: 120
  ident: CR11
  article-title: Existence and optimality conditions for approximate solutions to vector optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9891-6
– year: 2006
  ident: CR23
  publication-title: Variational Analysis and Generalizd Differentiation, Vol. I: Basic Theory, vol. 330
– volume: 43
  start-page: 533
  year: 2009
  end-page: 552
  ident: CR2
  article-title: Necessary conditions for super minimizers in constrained multiobjective optimization
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-008-9336-4
– year: 2005
  ident: CR5
  publication-title: Vector Optimization: Set-Valued and Variational Analysis
– year: 1989
  ident: CR22
  publication-title: Theory of Vector Optimization, Lecture Notes in Economics and Mathematics Systems, vol. 319
– volume: 311
  start-page: 647
  year: 2005
  end-page: 663
  ident: CR15
  article-title: Lagrange multipliers for set-valued optimization problems associated with coderivatives
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.03.011
– volume: 75
  start-page: 1305
  year: 2012
  end-page: 1323
  ident: CR17
  article-title: Optimality conditions for various efficient solutions involving codervatives: from set-valued optimization problems to set-valued equilibrium problems
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.03.015
– volume: 284
  start-page: 332
  year: 2003
  end-page: 350
  ident: CR13
  article-title: Optimality conditions for proper efficient solutions of vector set-valued optimization
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00360-3
– volume: 47
  start-page: 1
  year: 2010
  end-page: 12
  ident: CR25
  article-title: Some properties of approximate solutions for vector optimization problem with set-valued functions
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-009-9452-9
– volume: 104
  start-page: 69
  year: 2005
  end-page: 909
  ident: CR30
  article-title: Fermat rule for multifunctions in Banach spaces
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0569-9
– volume: 145
  start-page: 196
  year: 2010
  end-page: 211
  ident: CR8
  article-title: Lagrange multipliers for -pareto solutions in vector optimization with nonsolid cones in Banach spaces
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9609-1
– volume: 64
  start-page: 521
  year: 2006
  end-page: 540
  ident: CR10
  article-title: Lagrange conditions for vector optimization in Banach spaces
  publication-title: Math. Meth. Oper. Res.
  doi: 10.1007/s00186-006-0079-z
– year: 1998
  ident: CR26
  publication-title: Variational Analysis
  doi: 10.1007/978-3-642-02431-3
– volume: 122
  start-page: 301
  year: 2010
  end-page: 347
  ident: CR3
  article-title: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0249-2
– year: 2006
  ident: CR24
  publication-title: Variational Analysis and Generalizd Differentiation, Vol. II: Applications, vol. 331
– year: 1983
  ident: CR7
  publication-title: Optimization and Nonsmooth Analysis
– volume: 20
  start-page: 391
  year: 1979
  end-page: 393
  ident: CR20
  article-title: Convex -Programming
  publication-title: Soviet Math. Dokl.
– volume: 67
  start-page: 297
  year: 1990
  ident: 527_CR12
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940478
– volume: 41
  start-page: 159
  year: 1997
  ident: 527_CR1
  publication-title: Optimization.
  doi: 10.1080/02331939708844332
– ident: 527_CR6
  doi: 10.1007/s10957-010-9657-6
– volume: 75
  start-page: 1089
  year: 2012
  ident: 527_CR4
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.09.024
– volume-title: Variational Analysis and Generalizd Differentiation, Vol. I: Basic Theory, vol. 330
  year: 2006
  ident: 527_CR23
  doi: 10.1007/3-540-31247-1
– volume: 4
  start-page: 79
  year: 1979
  ident: 527_CR18
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.4.1.79
– volume: 43
  start-page: 265
  year: 1984
  ident: 527_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00936165
– volume: 75
  start-page: 1305
  year: 2012
  ident: 527_CR17
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.03.015
– volume: 122
  start-page: 301
  year: 2010
  ident: 527_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0249-2
– volume-title: Variational Methods in Partially Ordered Spaces
  year: 2003
  ident: 527_CR14
– volume: 284
  start-page: 332
  year: 2003
  ident: 527_CR13
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00360-3
– volume: 152
  start-page: 97
  year: 2012
  ident: 527_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9891-6
– volume-title: Vector Optimization: Theory, Applications, and Extensions
  year: 2004
  ident: 527_CR19
  doi: 10.1007/978-3-540-24828-6
– volume: 43
  start-page: 533
  year: 2009
  ident: 527_CR2
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-008-9336-4
– volume: 145
  start-page: 196
  year: 2010
  ident: 527_CR8
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9609-1
– volume: 55
  start-page: 435
  year: 1987
  ident: 527_CR28
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941179
– volume-title: Variational Analysis and Generalizd Differentiation, Vol. II: Applications, vol. 331
  year: 2006
  ident: 527_CR24
– volume: 104
  start-page: 69
  year: 2005
  ident: 527_CR30
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0569-9
– volume: 47
  start-page: 1
  year: 2010
  ident: 527_CR25
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-009-9452-9
– volume: 64
  start-page: 521
  year: 2006
  ident: 527_CR10
  publication-title: Math. Meth. Oper. Res.
  doi: 10.1007/s00186-006-0079-z
– volume-title: Vector Optimization: Set-Valued and Variational Analysis
  year: 2005
  ident: 527_CR5
– volume-title: Variational Analysis
  year: 1998
  ident: 527_CR26
  doi: 10.1007/978-3-642-02431-3
– volume-title: Theory of Vector Optimization, Lecture Notes in Economics and Mathematics Systems, vol. 319
  year: 1989
  ident: 527_CR22
– volume: 20
  start-page: 391
  year: 1979
  ident: 527_CR20
  publication-title: Soviet Math. Dokl.
– volume: 17
  start-page: 1154
  year: 2006
  ident: 527_CR31
  publication-title: SIAM J. Optim.
  doi: 10.1137/060651860
– ident: 527_CR16
  doi: 10.1007/978-1-4419-0158-3_21
– volume: 49
  start-page: 319
  year: 1986
  ident: 527_CR29
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940762
– volume: 62
  start-page: 187
  year: 2005
  ident: 527_CR27
  publication-title: Math. Meth. Oper. Res.
  doi: 10.1007/s00186-005-0007-7
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 527_CR7
– volume: 311
  start-page: 647
  year: 2005
  ident: 527_CR15
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.03.011
– volume: 60
  start-page: 575
  year: 2011
  ident: 527_CR9
  publication-title: Optimization.
  doi: 10.1080/02331930903531527
SSID ssj0061199
Score 1.9861978
Snippet The purpose of this paper is to consider the set-valued optimization problem in Asplund spaces without convexity assumption. By a scalarization function...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1847
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems
URI https://link.springer.com/article/10.1007/s11590-012-0527-z
Volume 7
WOSCitedRecordID wos000327439600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F9kYMnJZAmbZocRVw86CK-2IuUNE2XBe3Ktsqyv95JH7suqKDHlmkJk8l8CZn5PoROhOJGcxqT2FBKfKNSIpn1HW0lTRVNFLwqxSbCblf2euq27uPOm2r35kqyzNSzZjdAXldExQgNWEgmi2gJ0E46vYa7-6cm_QqvEo30pGsH8kPWXGV-94t5MJq_CS0BprP-r6FtoLV6P4nPqwDYRAs220KrX1gG4elmSs2ab6Pna90HfOpDWGA4CydVyRaGvSsu-cXHA7C0eBqSeJjhbJiV1eljnNuCOH5wm-AhJJvXuosT17o0-Q567Fw-XFyRWmOBGCZlASdHkVDtMy0CK7imwvosZSI1yhhqOKU21imXFkArsMYhXmikFMYLrIpjzvkuasEg7B7CHtNM0zTxVKp9p_sZMF8rWO-e1omJkzaijbMjUxOQOx2Ml2hGnez8GIEfI-fHaNJGp9NP3ir2jd-Mz5rZieqFmP9svf8n6wO0wpwORlnHcohaxejdHqFl81EM8tFxGYCfDybYGA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBJKaRJmiaPIo6J2xCdshcpaZqOgXayVhn79Sa9bA5U0MeW0xJOTs6XkHO-D4AzJoiSBIVOqBByqBKxw7GmlrYSxQJFwrzKxSb8Tof3euKu7ONOq2r36koyz9SzZjeDvLaICjvIw74zWQRL1ACWJcy_f3iq0i9zC9FIl9t2IOrj6irzu1_Mg9H8TWgOMI2Nfw1tE6yX-0l4WQTAFljQyTZY-8IyaJ7aU2rWdAc8t2Tf4FPfhAU0Z-GoKNmCZu8Kc37x8cBYajgNSThMYDJM8ur0MUx15lh-cB3BoUk2r2UXJyx1adJd8Ni47l41nVJjwVGY88ycHFmEJMWSeZoRiZimOMYsVkIppAhCOpQx4dqAlqeVRTxfcc6U62kRhoSQPVAzg9D7ALpYYoniyBWxpFb308NUCrPeXSkjFUZ1gCpnB6okILc6GC_BjDrZ-jEwfgysH4NJHZxPP3kr2Dd-M76oZicoF2L6s_XBn6xPwUqz224FrZvO7SFYxVYTI69pOQK1bPSuj8Gy-sgG6egkD8ZPOdPa_A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85sEnJSxNr3kUdSjOMfDCXqSkSToG2o21ytivN-llU1BBfGw5bcPJab6Ec873AZx4zBbcJhGOBCHYESzGAVWOoa0kMSOS6Vu52ITfbgfdLuuUOqdpVe1epSSLngbD0pRkjaGMG7PGN43CpqCKYuJSH0_mYcExdfTmuH7_VC3FnlUISFqBaQ1yfFqlNb97xVdg-poVzcGmufbvYa7DarnPROdFYGzAnEo2YeUT-6C-uptStqZb8NziPY1bPR0uSH9FFqVcSO9pUc47Pu5rS4WmoYoGCUoGSV61PkapyrDhDVcSDfQi9Fp2d6JSrybdhsfm1cPFNS61F7CgQZDpE6UnCXco91zl2Zx4yqEx9WLBhCDCJkRFPLYDpcHMVcIgoS-CwBOWq1gU2ba9AzU9CLULyKKcchJLi8XcMXqgLnU40-uAxbkUkawDqRwfipKY3OhjvIQzSmXjx1D7MTR-DCd1OJ0-MixYOX4zPqtmKix_0PRn670_WR_DUueyGbZu2rf7sEyNVEZe6nIAtWz0pg5hUbxn_XR0lMflB74K4-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+conditions+for+approximate+solutions+on+nonconvex+set-valued+optimization+problems&rft.jtitle=Optimization+letters&rft.au=Long%2C+X.+J.&rft.au=Li%2C+X.+B.&rft.au=Zeng%2C+J.&rft.date=2013-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=7&rft.issue=8&rft.spage=1847&rft.epage=1856&rft_id=info:doi/10.1007%2Fs11590-012-0527-z&rft.externalDocID=10_1007_s11590_012_0527_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon