Value distribution of q-differences of meromorphic functions in several complex variables
In this paper, we study q -difference analogues of several central results in value distribution theory of several complex variables such as q -difference versions of the logarithmic derivative lemma, the second main theorem for hyperplanes and hypersurfaces, and a Picard type theorem. Moreover, the...
Uloženo v:
| Vydáno v: | Analysis mathematica (Budapest) Ročník 46; číslo 4; s. 699 - 736 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2020
|
| Témata: | |
| ISSN: | 0133-3852, 1588-273X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study
q
-difference analogues of several central results in value distribution theory of several complex variables such as
q
-difference versions of the logarithmic derivative lemma, the second main theorem for hyperplanes and hypersurfaces, and a Picard type theorem. Moreover, the Tumura–Clunie theorem concerning partial
q
-difference polynomials is also obtained. Finally, we apply this theory to investigate the growth of meromorphic solutions of linear partial
q
-difference equations. |
|---|---|
| ISSN: | 0133-3852 1588-273X |
| DOI: | 10.1007/s10476-020-0058-2 |