Multivariable Askey–Wilson function and bispectrality

For every positive integer d , we define a meromorphic function F d ( n ; z ), where n , z ∈ℂ d , which is a natural extension of the multivariable Askey–Wilson polynomials of Gasper and Rahman (Theory and Applications of Special Functions, Dev. Math., vol. 13, pp. 209–219, Springer, New York, 2005...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal Jg. 24; H. 3; S. 273 - 287
Hauptverfasser: Geronimo, Jeffrey S., Iliev, Plamen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.04.2011
Schlagworte:
ISSN:1382-4090, 1572-9303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For every positive integer d , we define a meromorphic function F d ( n ; z ), where n , z ∈ℂ d , which is a natural extension of the multivariable Askey–Wilson polynomials of Gasper and Rahman (Theory and Applications of Special Functions, Dev. Math., vol. 13, pp. 209–219, Springer, New York, 2005 ). It is defined as a product of very-well-poised 8 φ 7 series and we show that it is a common eigenfunction of two commutative algebras and of difference operators acting on z and n , with eigenvalues depending on n and z , respectively. In particular, this leads to certain identities connecting products of very-well-poised 8 φ 7 series.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-010-9244-3