The NOF Multiparty Communication Complexity of Composed Functions

We study the k -party “number on the forehead” communication complexity of composed functions f ∘ g → , where f : { 0 , 1 } n → { ± 1 } , g → = ( g 1 , … , g n ) , g i : { 0 , 1 } k → { 0 , 1 } and for ( x 1 , … , x k ) ∈ ( { 0 , 1 } n ) k , f ∘ g → ( x 1 , … , x k ) = f ( … , g i ( x 1 , i , … , x...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational complexity Ročník 24; číslo 3; s. 645 - 694
Hlavní autoři: Ada, Anil, Chattopadhyay, Arkadev, Fawzi, Omar, Nguyen, Phuong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel Springer Basel 01.09.2015
Témata:
ISSN:1016-3328, 1420-8954
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the k -party “number on the forehead” communication complexity of composed functions f ∘ g → , where f : { 0 , 1 } n → { ± 1 } , g → = ( g 1 , … , g n ) , g i : { 0 , 1 } k → { 0 , 1 } and for ( x 1 , … , x k ) ∈ ( { 0 , 1 } n ) k , f ∘ g → ( x 1 , … , x k ) = f ( … , g i ( x 1 , i , … , x k , i ) , … ) . When g → = ( g , g , … , g ) , we denote f ∘ g → by f ∘ g . We show that there is an O ( log 3 n ) cost simultaneous protocol for SYM ∘ g when k >  1 + log  n , SYM is any symmetric function and g is any function. When k >  1 +  2 log  n , our simultaneous protocol applies to SYM ∘ g → with g → being a vector of n arbitrary functions. We also get a non-simultaneous protocol for SYM ∘ g → of cost O ( n / 2 k · log n + k log n ) for any k ≥  2. In the setting of k ≤  1 + log  n , we study more closely functions of the form MAJORITY ∘ g , MOD m ∘ g and NOR ∘ g , where the latter two are generalizations of the well-known and studied functions generalized inner product and disjointness, respectively. We characterize the communication complexity of these functions with respect to the choice of g . In doing so, we answer a question posed by Babai et al. (SIAM J Comput 33:137–166, 2003 ) and determine the communication complexity of MAJORITY ◦ QCSB k , where QCSB k is the “quadratic character of the sum of the bits” function. In the second part of our paper, we utilize the connection between the ‘number on the forehead’ model and Ramsey theory to construct a large set without a k -dimensional corner ( k -dimensional generalization of a k -term arithmetic progression) in ( F 2 n ) k , thereby obtaining the first non-trivial bound on the corresponding Ramsey number. Furthermore, we give an explicit coloring of [ N ] ×  [ N ] without a monochromatic two-dimensional corner and use this to obtain an explicit three-party protocol of cost O ( n ) for the EXACT N function. For x 1 , x 2 , x 3 n -bit integers, EXACT N ( x 1 , x 2 , x 3 ) = −1 iff x 1 +  x 2 +  x 3  =  N .
AbstractList We study the k -party “number on the forehead” communication complexity of composed functions f ∘ g → , where f : { 0 , 1 } n → { ± 1 } , g → = ( g 1 , … , g n ) , g i : { 0 , 1 } k → { 0 , 1 } and for ( x 1 , … , x k ) ∈ ( { 0 , 1 } n ) k , f ∘ g → ( x 1 , … , x k ) = f ( … , g i ( x 1 , i , … , x k , i ) , … ) . When g → = ( g , g , … , g ) , we denote f ∘ g → by f ∘ g . We show that there is an O ( log 3 n ) cost simultaneous protocol for SYM ∘ g when k >  1 + log  n , SYM is any symmetric function and g is any function. When k >  1 +  2 log  n , our simultaneous protocol applies to SYM ∘ g → with g → being a vector of n arbitrary functions. We also get a non-simultaneous protocol for SYM ∘ g → of cost O ( n / 2 k · log n + k log n ) for any k ≥  2. In the setting of k ≤  1 + log  n , we study more closely functions of the form MAJORITY ∘ g , MOD m ∘ g and NOR ∘ g , where the latter two are generalizations of the well-known and studied functions generalized inner product and disjointness, respectively. We characterize the communication complexity of these functions with respect to the choice of g . In doing so, we answer a question posed by Babai et al. (SIAM J Comput 33:137–166, 2003 ) and determine the communication complexity of MAJORITY ◦ QCSB k , where QCSB k is the “quadratic character of the sum of the bits” function. In the second part of our paper, we utilize the connection between the ‘number on the forehead’ model and Ramsey theory to construct a large set without a k -dimensional corner ( k -dimensional generalization of a k -term arithmetic progression) in ( F 2 n ) k , thereby obtaining the first non-trivial bound on the corresponding Ramsey number. Furthermore, we give an explicit coloring of [ N ] ×  [ N ] without a monochromatic two-dimensional corner and use this to obtain an explicit three-party protocol of cost O ( n ) for the EXACT N function. For x 1 , x 2 , x 3 n -bit integers, EXACT N ( x 1 , x 2 , x 3 ) = −1 iff x 1 +  x 2 +  x 3  =  N .
Author Nguyen, Phuong
Fawzi, Omar
Ada, Anil
Chattopadhyay, Arkadev
Author_xml – sequence: 1
  givenname: Anil
  surname: Ada
  fullname: Ada, Anil
  organization: School of Computer Science, McGill University
– sequence: 2
  givenname: Arkadev
  surname: Chattopadhyay
  fullname: Chattopadhyay, Arkadev
  email: arkadev.c@tifr.res.in
  organization: School of Technology and Computer Science, Tata Institute of Fundamental Research
– sequence: 3
  givenname: Omar
  surname: Fawzi
  fullname: Fawzi, Omar
  organization: Institute for Theoretical Physics, ETH
– sequence: 4
  givenname: Phuong
  surname: Nguyen
  fullname: Nguyen, Phuong
  organization: Dép. d’informatique et de recherche opérationnelle, Université de Montréal
BookMark eNp9kE1OwzAQhS1UJNrCAdjlAobxTxpnWVUUkArdlLVlOw64Su3KTiR6e5yWFQtWM09vvtHMm6GJD94idE_ggQBUjwkAWIWBMJylwPwKTQmngEVd8knugSwwY1TcoFlKewBSCsanaLn7ssX7dl28DV3vjir2p2IVDofBO6N6F_yojp39dtkI7VmFZJtiPXgz-ukWXbeqS_but87Rx_ppt3rBm-3z62q5wYYK0WPeCkq5oiVbVKBqplltuaoaTcmiZkYAN3UjeKO5tpqUpLQ2j1VagG6FBcbmqLrsNTGkFG0rjevPJ_ZRuU4SkGMS8pKEzEnIMQnJM0n-kMfoDiqe_mXohUl51n_aKPdhiD4_-A_0Azm_ch0
CitedBy_id crossref_primary_10_1145_3428671
crossref_primary_10_1016_j_ipl_2018_07_002
Cites_doi 10.1006/inco.1994.1051
10.1007/s00037-009-0276-2
10.1070/IM2003v067n01ABEH000422
10.1137/0406009
10.1016/j.jet.2004.10.007
10.1007/PL00001602
10.1073/pnas.32.12.331
10.1007/PL00001592
10.1016/0022-0000(92)90047-M
10.1006/jcss.1997.1545
10.1007/BF01263423
10.1007/BF02790016
10.1137/0222016
10.1137/S0097539702405620
10.4007/annals.2011.174.1.20
10.1007/BF01206318
10.1007/978-3-540-70918-3_43
10.1145/2213977.2214026
10.1016/S0065-2458(08)60342-3
10.1137/0217015
10.1145/28395.28404
10.4007/annals.2007.166.897
10.1070/IM2006v070n02ABEH002316
10.4086/toc.2008.v004a007
10.1017/S0963548303005790
10.1007/s11856-011-0061-1
10.1137/S0097539700375944
10.1006/jcss.1998.1577
10.1007/3-540-59042-0_88
10.1007/11821069_13
10.1109/FOCS.2009.12
10.1007/s000390050105
10.37236/546
10.1109/CCC.2009.24
10.1109/CCC.2011.31
10.26421/QIC9.3-4-5
10.1007/s00039-001-0332-9
10.1145/800061.808737
10.1017/S0024611506015991
10.1006/jcss.1995.1069
10.1112/jlms/s1-28.1.104
10.1112/blms/bdq018
10.1145/800135.804414
10.1137/060654645
10.1145/1015330.1015351
10.4086/toc.2010.v006a009
ContentType Journal Article
Copyright Springer Basel 2014
Copyright_xml – notice: Springer Basel 2014
DBID AAYXX
CITATION
DOI 10.1007/s00037-013-0078-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
EndPage 694
ExternalDocumentID 10_1007_s00037_013_0078_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c288t-4f8224a253670a93b39e4a7db21693c804c9d84db4beb1515ee0a97b80bf8e033
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359820100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Tue Nov 18 22:43:07 EST 2025
Sat Nov 29 02:52:51 EST 2025
Fri Feb 21 02:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Number on the forehead model
Ramsey theory
05D10
communication complexity
68Q17
68Q05
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-4f8224a253670a93b39e4a7db21693c804c9d84db4beb1515ee0a97b80bf8e033
PageCount 50
ParticipantIDs crossref_citationtrail_10_1007_s00037_013_0078_4
crossref_primary_10_1007_s00037_013_0078_4
springer_journals_10_1007_s00037_013_0078_4
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2015
Publisher Springer Basel
Publisher_xml – name: Springer Basel
References Timothy Gowers (CR23) 2001; 11
Noam, Avi (CR40) 1993; 22
László, Noam, Mario (CR4) 1992; 45
CR38
CR37
Yaoyun, Zhiqiang (CR52) 2009; 9
CR34
Noam, Ilya (CR39) 2006; 129
CR33
CR32
Fan R.K., Prasad (CR18) 1993; 6
Ran (CR46) 2000; 9
Hartmut (CR31) 2007; 37
Timothy Gowers (CR25) 2010; 42
CR2
Johan, Mikael (CR30) 1991; 1
Vince (CR27) 1994; 112
CR3
CR6
CR5
CR7
CR9
CR48
(CR36) 1998; 57
CR44
CR43
Harry, Yitzhak (CR22) 1978; 34
Noga, Yossi, Mario (CR1) 1999; 58
Tom (CR49) 2011; 174
CR19
CR17
CR16
CR15
CR59
CR14
Timothy Gowers (CR24) 2007; 166
CR58
CR13
CR57
CR12
CR56
CR11
CR55
CR54
(CR45) 1995; 5
CR53
(CR42) 2007; 37
CR51
CR50
Vince (CR29) 1998; 7
Felix A. (CR8) 1946; 32
Alexander (CR47) 2003; 67
CR28
CR26
Michael (CR20) 2011; 184
CR21
CR60
Troy, Adi (CR35) 2009; 18
Kevin (CR41) 2011; 18
Richard, Jun (CR10) 1994; 4
Grolmusz Vince (78_CR29) 1998; 7
Razborov Alexander (78_CR47) 2003; 67
78_CR50
78_CR51
78_CR53
78_CR54
78_CR11
78_CR55
78_CR12
78_CR56
78_CR13
78_CR57
78_CR14
78_CR58
78_CR15
78_CR59
78_CR16
78_CR17
Raz Ran (78_CR46) 2000; 9
78_CR19
78_CR41
Beigel Richard (78_CR10) 1994; 4
78_CR42
78_CR43
78_CR44
78_CR45
78_CR48
Sanders Tom (78_CR49) 2011; 174
Nisan Noam (78_CR40) 1993; 22
Grolmusz Vince (78_CR27) 1994; 112
Babai László (78_CR4) 1992; 45
Lee Troy (78_CR35) 2009; 18
78_CR32
78_CR33
78_CR34
78_CR36
78_CR7
78_CR37
78_CR6
78_CR38
78_CR5
78_CR9
Elkin Michael (78_CR20) 2011; 184
78_CR3
78_CR2
Alon Noga (78_CR1) 1999; 58
Nisan Noam (78_CR39) 2006; 129
78_CR60
Håstad Johan (78_CR30) 1991; 1
Klauck Hartmut (78_CR31) 2007; 37
78_CR21
78_CR23
78_CR24
78_CR25
Chung Fan R.K. (78_CR18) 1993; 6
Furstenberg Harry (78_CR22) 1978; 34
78_CR26
78_CR28
Behrend Felix A. (78_CR8) 1946; 32
Shi Yaoyun (78_CR52) 2009; 9
References_xml – volume: 112
  start-page: 51
  year: 1994
  end-page: 54
  ident: CR27
  article-title: The BNSLower Bound for Multi-party Protocols Is Nearly Optimal
  publication-title: Information and Computation
  doi: 10.1006/inco.1994.1051
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 18
  start-page: 309
  year: 2009
  end-page: 336
  ident: CR35
  article-title: Disjointness is Hard in the Multiparty Number-on-the-Forehead Model
  publication-title: Computational Complexity
  doi: 10.1007/s00037-009-0276-2
– volume: 5
  start-page: 205
  year: 1995
  end-page: 221
  ident: CR45
  article-title: Fourier Analysis for Probabilistic Communication Complexity
  publication-title: Computational Complexity
– ident: CR54
– ident: CR58
– volume: 67
  start-page: 145
  issue: 1
  year: 2003
  end-page: 159
  ident: CR47
  article-title: Quantum communication complexity of symmetric predicates
  publication-title: Izvestiya: Mathematics
  doi: 10.1070/IM2003v067n01ABEH000422
– ident: CR21
– volume: 6
  start-page: 110
  issue: 1
  year: 1993
  end-page: 123
  ident: CR18
  article-title: Communication complexity and quasi randomness
  publication-title: SIAM Journal on Discrete Mathematics
  doi: 10.1137/0406009
– ident: CR19
– volume: 37
  start-page: 845
  year: 2007
  end-page: 869
  ident: CR42
  article-title: Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity
  publication-title: SIAM Journal on Computing
– ident: CR15
– ident: CR50
– volume: 1
  start-page: 610
  year: 1991
  end-page: 618
  ident: CR30
  article-title: On The Power Of Small-Depth Threshold Circuits
  publication-title: Computational Complexity
– volume: 129
  start-page: 192
  year: 2006
  end-page: 224
  ident: CR39
  article-title: The communication requirements of efficient allocations and supporting prices
  publication-title: Journal of Economic Theory
  doi: 10.1016/j.jet.2004.10.007
– ident: CR11
– volume: 9
  start-page: 113
  issue: 2
  year: 2000
  end-page: 122
  ident: CR46
  article-title: The BNS-Chung criterion for multi-party communication complexity
  publication-title: Computational Complexity
  doi: 10.1007/PL00001602
– ident: CR9
– ident: CR57
– ident: CR32
– ident: CR60
– volume: 11
  start-page: 465
  year: 2001
  end-page: 588
  ident: CR23
  article-title: A new proof of Szemerédi’s theorem
  publication-title: Geometric and Functional Analysis
– ident: CR5
– volume: 18
  start-page: 59
  issue: 1
  year: 2011
  ident: CR41
  article-title: Sets of integers that do not contain long arithmetic progressions
  publication-title: The Electronic Journal of Combinatorics
– volume: 9
  start-page: 255
  year: 2009
  end-page: 263
  ident: CR52
  article-title: Communication complexities of symmetric XOR functions
  publication-title: Quantum Information and Computation
– ident: CR26
– volume: 32
  start-page: 331
  year: 1946
  end-page: 332
  ident: CR8
  article-title: On Sets of Integers Which Contain No Three Terms in Arithmetical Progression
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.32.12.331
– volume: 7
  start-page: 1
  year: 1998
  end-page: 18
  ident: CR29
  article-title: Circuits and Multi-Party Protocols
  publication-title: Computational Complexity
  doi: 10.1007/PL00001592
– volume: 42
  start-page: 573
  year: 2010
  end-page: 606
  ident: CR25
  article-title: Decompositions, approximate structure, transference, and the Hahn-Banach theorem
  publication-title: Bulletin of the London Mathematical Society
– ident: CR43
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 184
  start-page: 93
  issue: (1
  year: 2011
  end-page: 128
  ident: CR20
  article-title: An improved construction of progression-free sets
  publication-title: Israel Journal of Mathematics
– volume: 45
  start-page: 204
  issue: 2
  year: 1992
  end-page: 232
  ident: CR4
  article-title: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/0022-0000(92)90047-M
– ident: CR33
– ident: CR6
– volume: 58
  start-page: 137
  year: 1999
  end-page: 147
  ident: CR1
  article-title: The Space Complexity of Approximating the Frequency Moments
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1545
– volume: 57
  start-page: 37
  issue: 1
  year: 1998
  end-page: 49
  ident: CR36
  article-title: On Data Structures and Asymmetric Communication Complexity
  publication-title: Journal of Computer and System Sciences
– ident: CR56
– volume: 166
  start-page: 897
  year: 2007
  end-page: 946
  ident: CR24
  article-title: Hypergraph regularity and the multidimensional Szemerédi theorem
  publication-title: Annals of Mathematics
– ident: CR44
– volume: 4
  start-page: 350
  year: 1994
  end-page: 366
  ident: CR10
  article-title: On ACC
  publication-title: Computational Complexity
  doi: 10.1007/BF01263423
– ident: CR48
– ident: CR3
– ident: CR38
– volume: 34
  start-page: 275
  year: 1978
  end-page: 291
  ident: CR22
  article-title: An ergodic Szemerédi theorem for commuting transformations
  publication-title: Journal d’Analyse Mathematique
  doi: 10.1007/BF02790016
– ident: CR17
– ident: CR13
– ident: CR34
– volume: 22
  start-page: 211
  year: 1993
  end-page: 219
  ident: CR40
  article-title: Rounds in Communication Complexity Revisited
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0222016
– ident: CR55
– ident: CR7
– volume: 37
  start-page: 20
  year: 2007
  end-page: 46
  ident: CR31
  article-title: Lower Bounds for Quantum Communication Complexity
  publication-title: Siam Journal on Computing
  doi: 10.1137/S0097539702405620
– ident: CR59
– volume: 174
  start-page: 619
  year: 2011
  end-page: 636
  ident: CR49
  article-title: On Roths theorem on progressions
  publication-title: Annals of Mathematics
  doi: 10.4007/annals.2011.174.1.20
– ident: CR28
– volume: 32
  start-page: 331
  year: 1946
  ident: 78_CR8
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.32.12.331
– volume: 1
  start-page: 610
  year: 1991
  ident: 78_CR30
  publication-title: Computational Complexity
– ident: 78_CR45
  doi: 10.1007/BF01206318
– ident: 78_CR16
  doi: 10.1007/978-3-540-70918-3_43
– volume: 112
  start-page: 51
  year: 1994
  ident: 78_CR27
  publication-title: Information and Computation
  doi: 10.1006/inco.1994.1051
– ident: 78_CR51
  doi: 10.1145/2213977.2214026
– volume: 6
  start-page: 110
  issue: 1
  year: 1993
  ident: 78_CR18
  publication-title: SIAM Journal on Discrete Mathematics
  doi: 10.1137/0406009
– ident: 78_CR32
  doi: 10.1016/S0065-2458(08)60342-3
– ident: 78_CR17
  doi: 10.1137/0217015
– ident: 78_CR57
  doi: 10.1145/28395.28404
– ident: 78_CR24
  doi: 10.4007/annals.2007.166.897
– ident: 78_CR55
  doi: 10.1070/IM2006v070n02ABEH002316
– ident: 78_CR59
  doi: 10.4086/toc.2008.v004a007
– ident: 78_CR43
  doi: 10.1017/S0963548303005790
– volume: 9
  start-page: 113
  issue: 2
  year: 2000
  ident: 78_CR46
  publication-title: Computational Complexity
  doi: 10.1007/PL00001602
– volume: 184
  start-page: 93
  issue: (1
  year: 2011
  ident: 78_CR20
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-011-0061-1
– ident: 78_CR2
  doi: 10.1137/S0097539700375944
– ident: 78_CR36
  doi: 10.1006/jcss.1998.1577
– ident: 78_CR56
– ident: 78_CR14
– ident: 78_CR3
  doi: 10.1007/3-540-59042-0_88
– volume: 4
  start-page: 350
  year: 1994
  ident: 78_CR10
  publication-title: Computational Complexity
  doi: 10.1007/BF01263423
– ident: 78_CR9
  doi: 10.1007/11821069_13
– ident: 78_CR7
  doi: 10.1109/FOCS.2009.12
– ident: 78_CR12
  doi: 10.1007/s000390050105
– ident: 78_CR41
  doi: 10.37236/546
– ident: 78_CR34
  doi: 10.1109/CCC.2009.24
– volume: 7
  start-page: 1
  year: 1998
  ident: 78_CR29
  publication-title: Computational Complexity
  doi: 10.1007/PL00001592
– ident: 78_CR11
  doi: 10.1109/CCC.2011.31
– volume: 34
  start-page: 275
  year: 1978
  ident: 78_CR22
  publication-title: Journal d’Analyse Mathematique
  doi: 10.1007/BF02790016
– ident: 78_CR15
– volume: 9
  start-page: 255
  year: 2009
  ident: 78_CR52
  publication-title: Quantum Information and Computation
  doi: 10.26421/QIC9.3-4-5
– ident: 78_CR53
– ident: 78_CR38
– volume: 174
  start-page: 619
  year: 2011
  ident: 78_CR49
  publication-title: Annals of Mathematics
  doi: 10.4007/annals.2011.174.1.20
– ident: 78_CR44
– ident: 78_CR23
  doi: 10.1007/s00039-001-0332-9
– ident: 78_CR21
– volume: 22
  start-page: 211
  year: 1993
  ident: 78_CR40
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0222016
– ident: 78_CR13
  doi: 10.1145/800061.808737
– ident: 78_CR54
  doi: 10.1017/S0024611506015991
– ident: 78_CR28
  doi: 10.1006/jcss.1995.1069
– ident: 78_CR48
  doi: 10.1112/jlms/s1-28.1.104
– ident: 78_CR33
– volume: 129
  start-page: 192
  year: 2006
  ident: 78_CR39
  publication-title: Journal of Economic Theory
  doi: 10.1016/j.jet.2004.10.007
– ident: 78_CR50
– ident: 78_CR5
– volume: 18
  start-page: 309
  year: 2009
  ident: 78_CR35
  publication-title: Computational Complexity
  doi: 10.1007/s00037-009-0276-2
– ident: 78_CR58
– ident: 78_CR25
  doi: 10.1112/blms/bdq018
– ident: 78_CR37
– volume: 67
  start-page: 145
  issue: 1
  year: 2003
  ident: 78_CR47
  publication-title: Izvestiya: Mathematics
  doi: 10.1070/IM2003v067n01ABEH000422
– ident: 78_CR60
  doi: 10.1145/800135.804414
– ident: 78_CR42
  doi: 10.1137/060654645
– volume: 58
  start-page: 137
  year: 1999
  ident: 78_CR1
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1545
– ident: 78_CR19
  doi: 10.1145/1015330.1015351
– ident: 78_CR6
  doi: 10.4086/toc.2010.v006a009
– volume: 45
  start-page: 204
  issue: 2
  year: 1992
  ident: 78_CR4
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/0022-0000(92)90047-M
– ident: 78_CR26
– volume: 37
  start-page: 20
  year: 2007
  ident: 78_CR31
  publication-title: Siam Journal on Computing
  doi: 10.1137/S0097539702405620
SSID ssj0015834
Score 2.098724
Snippet We study the k -party “number on the forehead” communication complexity of composed functions f ∘ g → , where f : { 0 , 1 } n → { ± 1 } , g → = ( g 1 , … , g n...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 645
SubjectTerms Algorithm Analysis and Problem Complexity
Computational Mathematics and Numerical Analysis
Computer Science
Title The NOF Multiparty Communication Complexity of Composed Functions
URI https://link.springer.com/article/10.1007/s00037-013-0078-4
Volume 24
WOSCitedRecordID wos000359820100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD1apYX-TgSVmI2U2zeyxi8GIVX_QW9gmCtKWpgv_e2c0DCirocckkhNnZnRlm5vsAzgbKcE6VJC5VGWGCWSIwsMecx2H2PBCX0vBANpGNRnw8Fvf1HHfZdLs3JclwU7fDbgErhQQ2AvRrhK3CGno77vkaHh5f2tJByqtSMsYyhNKEN6XM7z6x7IyWK6HBweTdf_3aNmzV8WQ0rAxgB1bspAfdhqshqo9uDzZvW3zWcheGaB3R6C6PwvztDM3nM1oaFfGrmcfKxAdTF1bT0pooRzcYLHUPnvPrp6sbUpMpEJ1wviDM-X5RmaQesU0KqqiwTGZGJR6ORfOYaWE4M4opvL4xyrEWxTLFY-W4jSndh85kOrEHEKWXGvMYTJ199EKNkEkiXaYdlczgjus-xI1WC10jjXvCi7eixUgOCitQYYVXWMH6cN6-MqtgNn4Tvmi2oahPXPmz9OGfpI9gA0OitOoiO4bOYv5uT2Bdfyxey_lpsLQvJzrLGw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_vgkxLomnRNHodYJm5VdMreSpOmIMg21in433tJP2Cggj6GXku5XHK_4-5-B3DRlSnnVCYk82VAmGCaCAT2GPNkGD13RSdJuR02EUQRH4_FQ9nHnVfV7lVK0t7UdbOb5UohdhoB-jXCVmGNocMyhPmPTy916sDnRSoZsQyh1ONVKvO7Tyw7o-VMqHUwYfNfv7YD2yWedHqFAezCip60oFnNanDKo9uCrWHNz5rvQQ-tw4nuQ8f2387QfD6dpVYRs5oZrkx8MM3saprr1AnRDVpL3Yfn8GZ03SflMAWiPM4XhGWmXjTxfMPYlggqqdAsCVLpGToWxV2mRMpZKpnE6xtRjtYoFkjuyoxrl9IDaEymE30Ijt9RGMdg6GzQC01F4nlJFqiMJizFHVdtcCutxqpkGjcDL97imiPZKixGhcVGYTFrw2X9yqyg2fhN-Krahrg8cfnP0kd_kj6Hjf5oOIgHt9HdMWwiPPKLirITaCzm7_oU1tXH4jWfn1mr-wK2Js3_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDq6vi-uzBkxLsNuk2PS5qUdS64IO9laZJQZBu2VbBf-8kfcCCCuIxdBrK9Etmhpn5BuBkKCTnVMQkdYVHmM8U8dGxx5gnxeh56A9iyc2wCS8M-WTij-s5p0VT7d6kJKueBs3SlJXnuUzP28Y3w5tCzGQCtHGELcIS03X0Olx_fGnTCC6v0sro1xBKHd6kNb_bYt4wzWdFjbEJuv_-zA1Yr_1Ma1QBYxMWVNaDbjPDwaqPdA_W7lve1mILRogaK3wILNOXmyOsPq25FhK9yjWHJj6YpmY1LZS0AjSPBsHb8BxcPV1ck3rIAkkczkvCUl1HGjuuZnKLfSqor1jsSeFompaE2yzxJWdSMIHXOno_SqGYJ7gtUq5sSnegk00ztQuWO0gwvsGQWns1VPqx48Spl6Q0ZhKRkPTBbjQcJTUDuR6E8Ra13MlGYREqLNIKi1gfTttX8op-4zfhs-aXRPVJLH6W3vuT9DGsjC-D6O4mvN2HVfSa3KrQ7AA65exdHcJy8lG-FrMjA8AvZ-bW4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+NOF+Multiparty+Communication+Complexity+of+Composed+Functions&rft.jtitle=Computational+complexity&rft.au=Ada%2C+Anil&rft.au=Chattopadhyay%2C+Arkadev&rft.au=Fawzi%2C+Omar&rft.au=Nguyen%2C+Phuong&rft.date=2015-09-01&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=24&rft.issue=3&rft.spage=645&rft.epage=694&rft_id=info:doi/10.1007%2Fs00037-013-0078-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00037_013_0078_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon