Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering

In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means (FKM) and Imperialist Competitive Algorithm (ICA), and PSOFKM makes full use of the merits of both Particle Swarm Optimization (PSO) and FKM a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian Journal for Science and Engineering Jg. 40; H. 12; S. 3545 - 3554
Hauptverfasser: Emami, Hojjat, Derakhshan, Farnaz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Schlagworte:
ISSN:1319-8025, 2191-4281
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means (FKM) and Imperialist Competitive Algorithm (ICA), and PSOFKM makes full use of the merits of both Particle Swarm Optimization (PSO) and FKM algorithms. FKM is one of the most popular data clustering methods. However, this algorithm solves the problem of sensitivity to initial states of K-Means (KM) algorithm, but like KM, it often converges to local optima. The proposed ICAFKM and PSOFKM algorithms aim to help the FKM to escape from local optima and increase the convergence speed of the ICA and PSO algorithms in clustering process. In order to evaluate the performance of ICAFKM and PSOFKM methods, we evaluate these algorithms on five datasets and compared them with FKM, ICA, PSO, PSOKHM, and HABC algorithms. The experimental results indicate that the ICAFKM carries out better results than the other methods.
AbstractList In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means (FKM) and Imperialist Competitive Algorithm (ICA), and PSOFKM makes full use of the merits of both Particle Swarm Optimization (PSO) and FKM algorithms. FKM is one of the most popular data clustering methods. However, this algorithm solves the problem of sensitivity to initial states of K-Means (KM) algorithm, but like KM, it often converges to local optima. The proposed ICAFKM and PSOFKM algorithms aim to help the FKM to escape from local optima and increase the convergence speed of the ICA and PSO algorithms in clustering process. In order to evaluate the performance of ICAFKM and PSOFKM methods, we evaluate these algorithms on five datasets and compared them with FKM, ICA, PSO, PSOKHM, and HABC algorithms. The experimental results indicate that the ICAFKM carries out better results than the other methods.
Author Derakhshan, Farnaz
Emami, Hojjat
Author_xml – sequence: 1
  givenname: Hojjat
  surname: Emami
  fullname: Emami, Hojjat
  email: hojjatemami@yahoo.com
  organization: Faculty of Electrical and Computer Engineering, University of Tabriz
– sequence: 2
  givenname: Farnaz
  surname: Derakhshan
  fullname: Derakhshan, Farnaz
  organization: Faculty of Electrical and Computer Engineering, University of Tabriz
BookMark eNp9kMtOwzAQRS1UJNrCB7DzB9TgifOwl1WgUFFUJGAdOYkTXCVOsF1Q-_WklBWLrkYj3XOleyZoZDqjELoGegOUJrcOGIsFoRAR4EFM2BkaByCAhAGHERoDA0E4DaILNHFuQ2kMPGFj9Lk0XtVWem1qvNju9zv8RJ6VNG6GX6T1umgUfv2WtsXr3utW74doZ2ZYmhIv215ZLRvtPE674fHa6y-F503dWe0_Wlx1Ft9JL3HabJ0fwqa-ROeVbJy6-rtT9L64f0sfyWr9sEznK1IEnHsSsiIOKVQVZwnP4xKKssqFUCLIw0JAEcUqTxKasJxXgnLBQQiZMAVhpIK4LNkUwbG3sJ1zVlVZb3Ur7S4Dmh2cZUdn2eAsOzjL2MAk_5hC-9_B3krdnCSDI-n6w0hls023tWYYeAL6AabKhBM
CitedBy_id crossref_primary_10_3390_app112311246
crossref_primary_10_1007_s11063_020_10326_4
crossref_primary_10_1016_j_advengsoft_2022_103331
crossref_primary_10_1007_s00500_021_05944_6
crossref_primary_10_1007_s12517_021_07069_4
crossref_primary_10_1016_j_engappai_2023_107776
crossref_primary_10_1007_s00366_018_0621_7
crossref_primary_10_1007_s13369_019_04317_4
crossref_primary_10_1016_j_patrec_2017_10_031
crossref_primary_10_1007_s11042_020_09718_4
crossref_primary_10_1109_ACCESS_2019_2956068
crossref_primary_10_1016_j_engappai_2019_04_007
crossref_primary_10_1016_j_procs_2025_03_309
crossref_primary_10_1007_s00366_017_0543_9
crossref_primary_10_3233_JIFS_181177
crossref_primary_10_1007_s40010_017_0347_8
crossref_primary_10_1016_j_asoc_2021_108005
crossref_primary_10_3390_s24082606
Cites_doi 10.1016/j.neucom.2012.04.025
10.1007/978-3-319-07353-8_40
10.1109/TCE.2009.5373781
10.1016/j.cnsns.2011.08.021
10.1017/CBO9780511809071
10.1016/j.eswa.2009.02.003
10.1016/0098-3004(84)90020-7
10.1016/j.measurement.2014.04.034
10.1109/TKDE.2008.88
10.1016/j.compbiomed.2007.09.002
10.1016/j.ins.2013.01.021
10.1109/FUZZ.2001.1007282
10.1007/978-1-4757-0450-1
10.1109/IWACI.2010.5585234
10.1016/j.apm.2014.11.041
10.1109/WCICA.2006.1714253
10.1109/FUZZY.2006.1681719
10.1007/978-81-322-2208-8_14
10.1109/CICN.2010.80
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2015
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2015
DBID AAYXX
CITATION
DOI 10.1007/s13369-015-1826-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 3554
ExternalDocumentID 10_1007_s13369_015_1826_3
GroupedDBID 06D
0VY
23M
29~
2KM
30V
4.4
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ABULA
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
ANMIH
AYJHY
BGNMA
C1A
ESBYG
ESX
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HF~
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
M4Y
NU0
O9-
O93
OK1
P9P
R9I
RLLFE
S1Z
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
AAYXX
CITATION
OVT
ID FETCH-LOGICAL-c288t-43c6401ff8378b6d1cdfb99e92b4c91c56eb77073b8f90898199a73e145e26dd3
IEDL.DBID RSV
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364971200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1319-8025
IngestDate Sat Nov 29 07:53:35 EST 2025
Tue Nov 18 22:35:38 EST 2025
Fri Feb 21 02:36:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Fuzzy K-Means algorithm
Particle Swarm Optimization
Optimization
Data clustering
Imperialist Competitive Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-43c6401ff8378b6d1cdfb99e92b4c91c56eb77073b8f90898199a73e145e26dd3
PageCount 10
ParticipantIDs crossref_primary_10_1007_s13369_015_1826_3
crossref_citationtrail_10_1007_s13369_015_1826_3
springer_journals_10_1007_s13369_015_1826_3
PublicationCentury 2000
PublicationDate 20151200
2015-12-00
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Arabian Journal for Science and Engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Halberstadt, Douglas (CR11) 2008; 38
Haupt, Haupt, Wiley (CR12) 2004
Chang, Lai, Jeng (CR5) 2011; 27
CR4
CR3
CR6
Bezdek, Ehrlich, Full (CR10) 1984; 10
Li, Ng, Cheung, Huang (CR16) 2008; 20
CR19
CR7
CR18
CR15
Isa, Salamah, Ngah (CR17) 2009; 55
CR14
CR13
CR23
Shamshirband, Amini, Anuar, Kiah (CR24) 2014; 55
CR20
Nayak, Nanda, Nayak, Naik, Behera (CR22) 2014; 27
Yang, Sun, Zhang (CR1) 2009; 36
Yan, Zhu, Zou, Wang (CR9) 2012; 97
Talatahari, Azar, Sheikholeslami, Gandomi (CR8) 2012; 17
Manning, Raghavan, Schütze (CR2) 2008
Aydilek, Arslan (CR21) 2013; 233
JC. Bezdek (1826_CR10) 1984; 10
W. Halberstadt (1826_CR11) 2008; 38
N.A.M. Isa (1826_CR17) 2009; 55
F. Yang (1826_CR1) 2009; 36
S. Shamshirband (1826_CR24) 2014; 55
C.T. Chang (1826_CR5) 2011; 27
1826_CR20
X. Yan (1826_CR9) 2012; 97
1826_CR14
R.L. Haupt (1826_CR12) 2004
1826_CR15
S. Talatahari (1826_CR8) 2012; 17
1826_CR23
1826_CR13
I.B. Aydilek (1826_CR21) 2013; 233
1826_CR18
1826_CR19
1826_CR7
M.J. Li (1826_CR16) 2008; 20
J. Nayak (1826_CR22) 2014; 27
1826_CR6
1826_CR3
C.D. Manning (1826_CR2) 2008
1826_CR4
References_xml – ident: CR19
– ident: CR18
– volume: 97
  start-page: 241
  year: 2012
  end-page: 250
  ident: CR9
  article-title: A new approach for data clustering using hybrid artificial bee colony algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.025
– volume: 27
  start-page: 339
  year: 2014
  end-page: 348
  ident: CR22
  article-title: An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets
  publication-title: Smart Innov. Syst. Technol.
  doi: 10.1007/978-3-319-07353-8_40
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR15
– volume: 55
  start-page: 2145
  issue: 4
  year: 2009
  end-page: 2153
  ident: CR17
  article-title: Adaptive fuzzy moving K-means clustering algorithm for image segmentation
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2009.5373781
– volume: 17
  start-page: 1312
  issue: 3
  year: 2012
  end-page: 1319
  ident: CR8
  article-title: Imperialist competitive algorithm combined with chaos for global optimization
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.08.021
– year: 2008
  ident: CR2
  publication-title: Introduction to Information Retrieval, Vol. 1
  doi: 10.1017/CBO9780511809071
– volume: 27
  start-page: 995
  year: 2011
  end-page: 1009
  ident: CR5
  article-title: A fuzzy K-means clustering algorithm using cluster center displacement
  publication-title: J. Inf. Sci. Eng.
– volume: 36
  start-page: 9847
  issue: 6
  year: 2009
  end-page: 9852
  ident: CR1
  article-title: An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.003
– ident: CR13
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: CR10
  article-title: FCM: The fuzzy C-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: CR6
– ident: CR7
– volume: 55
  start-page: 212
  year: 2014
  end-page: 226
  ident: CR24
  article-title: FICCA: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.034
– year: 2004
  ident: CR12
  publication-title: Practical Genetic Algorithms, 2nd edn
– ident: CR23
– volume: 20
  start-page: 1519
  issue: 11
  year: 2008
  end-page: 1534
  ident: CR16
  article-title: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.88
– ident: CR20
– volume: 38
  start-page: 165
  issue: 2
  year: 2008
  end-page: 170
  ident: CR11
  article-title: Fuzzy clustering to detect tuberculous meningitis-associated hyper density in CT images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.09.002
– volume: 233
  start-page: 25
  year: 2013
  end-page: 35
  ident: CR21
  article-title: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm
  publication-title: Inf. Sci. (NY)
  doi: 10.1016/j.ins.2013.01.021
– ident: 1826_CR4
  doi: 10.1109/FUZZ.2001.1007282
– ident: 1826_CR6
  doi: 10.1007/978-1-4757-0450-1
– volume-title: Practical Genetic Algorithms, 2nd edn
  year: 2004
  ident: 1826_CR12
– volume-title: Introduction to Information Retrieval, Vol. 1
  year: 2008
  ident: 1826_CR2
  doi: 10.1017/CBO9780511809071
– volume: 20
  start-page: 1519
  issue: 11
  year: 2008
  ident: 1826_CR16
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.88
– ident: 1826_CR18
  doi: 10.1109/IWACI.2010.5585234
– ident: 1826_CR23
  doi: 10.1016/j.apm.2014.11.041
– volume: 10
  start-page: 191
  year: 1984
  ident: 1826_CR10
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: 1826_CR15
  doi: 10.1109/WCICA.2006.1714253
– ident: 1826_CR13
– ident: 1826_CR14
  doi: 10.1109/FUZZY.2006.1681719
– volume: 233
  start-page: 25
  year: 2013
  ident: 1826_CR21
  publication-title: Inf. Sci. (NY)
  doi: 10.1016/j.ins.2013.01.021
– volume: 55
  start-page: 212
  year: 2014
  ident: 1826_CR24
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.034
– volume: 38
  start-page: 165
  issue: 2
  year: 2008
  ident: 1826_CR11
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.09.002
– volume: 55
  start-page: 2145
  issue: 4
  year: 2009
  ident: 1826_CR17
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2009.5373781
– volume: 17
  start-page: 1312
  issue: 3
  year: 2012
  ident: 1826_CR8
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.08.021
– volume: 27
  start-page: 339
  year: 2014
  ident: 1826_CR22
  publication-title: Smart Innov. Syst. Technol.
  doi: 10.1007/978-3-319-07353-8_40
– volume: 36
  start-page: 9847
  issue: 6
  year: 2009
  ident: 1826_CR1
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.003
– ident: 1826_CR3
  doi: 10.1007/978-81-322-2208-8_14
– ident: 1826_CR19
  doi: 10.1109/CICN.2010.80
– volume: 97
  start-page: 241
  year: 2012
  ident: 1826_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.025
– ident: 1826_CR7
  doi: 10.1109/ICNN.1995.488968
– volume: 27
  start-page: 995
  year: 2011
  ident: 1826_CR5
  publication-title: J. Inf. Sci. Eng.
– ident: 1826_CR20
SSID ssj0061873
ssj0001916267
Score 2.1578252
Snippet In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 3545
SubjectTerms Engineering
Humanities and Social Sciences
multidisciplinary
Research Article - Computer Engineering and Computer Science
Science
Title Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering
URI https://link.springer.com/article/10.1007/s13369-015-1826-3
Volume 40
WOSCitedRecordID wos000364971200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 1319-8025
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8R4KQdOsEi0SdP0OA0mJmBMDKbdqjRNYdLaja4DsV9PkrWMSYAEx0ruQ45jf6ntzwCccBUSBQlDRIXaTSRSBxQeSYo0kQrjjAShaR_r3LjNJut2vVbexz0qqt2LlKTx1LNmN4ypru1xkMbECC-CJRXtmJ7XcN_uzH6sKMBjpipN3TG1mEkzW7pbh6kIX6Q2v3vkfHCaz4yagFNf_9enboC1HF_C6tQgNsGCTLbA6hfWwW3w0sgpItQVrI8nk3d4jW6lilkV2MotCbbfeBrDO-VQ4rxTswJ5EsJGPDQ2q6wD1gzmNsVHsNp_GqS97DmGCgXDC55xWOuPNQuDessOeKxfPtSuUD55AQmbsQwRLKg6eEWRppsPaGiJMAo8T3p2QIRnCYfKwHWVdwhYpBOHClZ43MXSIo60aRjiXVBKBoncA5DZWATngsqIYBJ4jOszj3Q5IcQRxJNlcF6o3Bc5LbmejtH3Z4TKWpu-0qavtenjMjj9vGU45eT4TfisWCM_356jn6X3_yR9AFZss8i6uuUQlLJ0LI_AsnjNeqP02JjlB7I42pM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gIAEH3ojxzIETrNLapGl6nAbTpj2Y2Jh2q9I0hUl70XUg9utJspYxCZDgWMl9yHHsz7X9BYArJkMix0FgEC53Ew5lgsJCQQxFpEIZxX6gx8c6NafRoN2u20zmuCdpt3taktSeejHshhBRvT22oTCxgVbBGpYBSxHmP7Q6ix8rEvDoU5Xm7piYVJeZTTWtQ2WET0ub3z1yOTgtV0Z1wCnt_OtTd8F2gi9hYW4Qe2BFDPfB1hfWwQPwUkkoIuQVLE1ns3dYNepCxqwcbCaWBFtvLBrAe-lQBsmkZg6yYQArg7G2WWkdsKgxt24-goX-0yjqxc8DKFEwvGUxg8X-VLEwyLccgsfSXbtYNpKTFwxuURobGHEiE68wVHTzPglMHoS-6wrX8jF3TW4T4TuO9A4-DVXhUMIKlzlImNgWFgkCdAQyw9FQHANILcT9PCcixAj7LmUq5xEOwxjbHLsiC_Kpyj2e0JKr0zH63oJQWWnTk9r0lDY9lAXXn7eM55wcvwnfpGvkJdtz8rP0yZ-kL8FGuV2vebVKo3oKNi294KrT5Qxk4mgqzsE6f417k-hCm-gH-g3ddw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8UjdEHv4342Qef1AW2lq57JCCRgEiCEt6Wru2UBAbC0Mhfb1s2kURNjI9Lbh-5Xnu_2939DoALplwix0JYhKvdhEMVoLBQEksTqVBGcSBM-1i77jYatNPxmsmc03Fa7Z6mJGc9DZqlKYpzQxHm5o1vCBFd51OwND620DJYwbqOXofrrfb8J4sCP2bC0uxoJjY1KWdbd-5Q5e3TNOd3j1x0VItZUuN8Klv__uxtsJngTlicGcoOWJLRLtj4wka4B16qCXWEuoKVyXT6DmvWnVS-7Bo2EwuDrTc26sN7ddD0kw7Oa8giAav9obFlZTWwZLC4KUqCxd7TYNSNn_tQoWNYZjGDpd5EszOot-yDx8rNQ-nWSiYyWNyhNLYw4kQFZGGoaegDImwuwsDzpOcEmHs2LxAZuK46NQIa6oSighsec5G0cUE6RAh0ADLRIJKHAFIH8SDPiQwxwoFHmY6FpMswxgWOPZkF-VT9Pk_oyvXUjJ4_J1rW2vSVNn2tTR9lweXnLcMZV8dvwlfpevnJth3_LH30J-lzsNYsV_x6tVE7BuuOWW9dAHMCMvFoIk_BKn-Nu-PRmbHWDySR5ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Fuzzy+K-Means%2C+Particle+Swarm+Optimization%2C+and+Imperialist+Competitive+Algorithm+for+Data+Clustering&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Emami%2C+Hojjat&rft.au=Derakhshan%2C+Farnaz&rft.date=2015-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=40&rft.issue=12&rft.spage=3545&rft.epage=3554&rft_id=info:doi/10.1007%2Fs13369-015-1826-3&rft.externalDocID=10_1007_s13369_015_1826_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon