Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering
In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means (FKM) and Imperialist Competitive Algorithm (ICA), and PSOFKM makes full use of the merits of both Particle Swarm Optimization (PSO) and FKM a...
Gespeichert in:
| Veröffentlicht in: | Arabian Journal for Science and Engineering Jg. 40; H. 12; S. 3545 - 3554 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2015
|
| Schlagworte: | |
| ISSN: | 1319-8025, 2191-4281 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means (FKM) and Imperialist Competitive Algorithm (ICA), and PSOFKM makes full use of the merits of both Particle Swarm Optimization (PSO) and FKM algorithms. FKM is one of the most popular data clustering methods. However, this algorithm solves the problem of sensitivity to initial states of K-Means (KM) algorithm, but like KM, it often converges to local optima. The proposed ICAFKM and PSOFKM algorithms aim to help the FKM to escape from local optima and increase the convergence speed of the ICA and PSO algorithms in clustering process. In order to evaluate the performance of ICAFKM and PSOFKM methods, we evaluate these algorithms on five datasets and compared them with FKM, ICA, PSO, PSOKHM, and HABC algorithms. The experimental results indicate that the ICAFKM carries out better results than the other methods. |
|---|---|
| AbstractList | In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means (FKM) and Imperialist Competitive Algorithm (ICA), and PSOFKM makes full use of the merits of both Particle Swarm Optimization (PSO) and FKM algorithms. FKM is one of the most popular data clustering methods. However, this algorithm solves the problem of sensitivity to initial states of K-Means (KM) algorithm, but like KM, it often converges to local optima. The proposed ICAFKM and PSOFKM algorithms aim to help the FKM to escape from local optima and increase the convergence speed of the ICA and PSO algorithms in clustering process. In order to evaluate the performance of ICAFKM and PSOFKM methods, we evaluate these algorithms on five datasets and compared them with FKM, ICA, PSO, PSOKHM, and HABC algorithms. The experimental results indicate that the ICAFKM carries out better results than the other methods. |
| Author | Derakhshan, Farnaz Emami, Hojjat |
| Author_xml | – sequence: 1 givenname: Hojjat surname: Emami fullname: Emami, Hojjat email: hojjatemami@yahoo.com organization: Faculty of Electrical and Computer Engineering, University of Tabriz – sequence: 2 givenname: Farnaz surname: Derakhshan fullname: Derakhshan, Farnaz organization: Faculty of Electrical and Computer Engineering, University of Tabriz |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzB9TgifOwl1WgUFFUJGAdOYkTXCVOsF1Q-_WklBWLrkYj3XOleyZoZDqjELoGegOUJrcOGIsFoRAR4EFM2BkaByCAhAGHERoDA0E4DaILNHFuQ2kMPGFj9Lk0XtVWem1qvNju9zv8RJ6VNG6GX6T1umgUfv2WtsXr3utW74doZ2ZYmhIv215ZLRvtPE674fHa6y-F503dWe0_Wlx1Ft9JL3HabJ0fwqa-ROeVbJy6-rtT9L64f0sfyWr9sEznK1IEnHsSsiIOKVQVZwnP4xKKssqFUCLIw0JAEcUqTxKasJxXgnLBQQiZMAVhpIK4LNkUwbG3sJ1zVlVZb3Ur7S4Dmh2cZUdn2eAsOzjL2MAk_5hC-9_B3krdnCSDI-n6w0hls023tWYYeAL6AabKhBM |
| CitedBy_id | crossref_primary_10_3390_app112311246 crossref_primary_10_1007_s11063_020_10326_4 crossref_primary_10_1016_j_advengsoft_2022_103331 crossref_primary_10_1007_s00500_021_05944_6 crossref_primary_10_1007_s12517_021_07069_4 crossref_primary_10_1016_j_engappai_2023_107776 crossref_primary_10_1007_s00366_018_0621_7 crossref_primary_10_1007_s13369_019_04317_4 crossref_primary_10_1016_j_patrec_2017_10_031 crossref_primary_10_1007_s11042_020_09718_4 crossref_primary_10_1109_ACCESS_2019_2956068 crossref_primary_10_1016_j_engappai_2019_04_007 crossref_primary_10_1016_j_procs_2025_03_309 crossref_primary_10_1007_s00366_017_0543_9 crossref_primary_10_3233_JIFS_181177 crossref_primary_10_1007_s40010_017_0347_8 crossref_primary_10_1016_j_asoc_2021_108005 crossref_primary_10_3390_s24082606 |
| Cites_doi | 10.1016/j.neucom.2012.04.025 10.1007/978-3-319-07353-8_40 10.1109/TCE.2009.5373781 10.1016/j.cnsns.2011.08.021 10.1017/CBO9780511809071 10.1016/j.eswa.2009.02.003 10.1016/0098-3004(84)90020-7 10.1016/j.measurement.2014.04.034 10.1109/TKDE.2008.88 10.1016/j.compbiomed.2007.09.002 10.1016/j.ins.2013.01.021 10.1109/FUZZ.2001.1007282 10.1007/978-1-4757-0450-1 10.1109/IWACI.2010.5585234 10.1016/j.apm.2014.11.041 10.1109/WCICA.2006.1714253 10.1109/FUZZY.2006.1681719 10.1007/978-81-322-2208-8_14 10.1109/CICN.2010.80 10.1109/ICNN.1995.488968 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2015 |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2015 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13369-015-1826-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 3554 |
| ExternalDocumentID | 10_1007_s13369_015_1826_3 |
| GroupedDBID | 06D 0VY 23M 29~ 2KM 30V 4.4 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ABULA ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR ANMIH AYJHY BGNMA C1A ESBYG ESX FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HF~ HMJXF HRMNR HZ~ I0C IXD J9A KOV M4Y NU0 O9- O93 OK1 P9P R9I RLLFE S1Z S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 AAYXX CITATION OVT |
| ID | FETCH-LOGICAL-c288t-43c6401ff8378b6d1cdfb99e92b4c91c56eb77073b8f90898199a73e145e26dd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364971200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1319-8025 |
| IngestDate | Sat Nov 29 07:53:35 EST 2025 Tue Nov 18 22:35:38 EST 2025 Fri Feb 21 02:36:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Fuzzy K-Means algorithm Particle Swarm Optimization Optimization Data clustering Imperialist Competitive Algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-43c6401ff8378b6d1cdfb99e92b4c91c56eb77073b8f90898199a73e145e26dd3 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1007_s13369_015_1826_3 crossref_citationtrail_10_1007_s13369_015_1826_3 springer_journals_10_1007_s13369_015_1826_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20151200 2015-12-00 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 20151200 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Arabian Journal for Science and Engineering |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2015 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Halberstadt, Douglas (CR11) 2008; 38 Haupt, Haupt, Wiley (CR12) 2004 Chang, Lai, Jeng (CR5) 2011; 27 CR4 CR3 CR6 Bezdek, Ehrlich, Full (CR10) 1984; 10 Li, Ng, Cheung, Huang (CR16) 2008; 20 CR19 CR7 CR18 CR15 Isa, Salamah, Ngah (CR17) 2009; 55 CR14 CR13 CR23 Shamshirband, Amini, Anuar, Kiah (CR24) 2014; 55 CR20 Nayak, Nanda, Nayak, Naik, Behera (CR22) 2014; 27 Yang, Sun, Zhang (CR1) 2009; 36 Yan, Zhu, Zou, Wang (CR9) 2012; 97 Talatahari, Azar, Sheikholeslami, Gandomi (CR8) 2012; 17 Manning, Raghavan, Schütze (CR2) 2008 Aydilek, Arslan (CR21) 2013; 233 JC. Bezdek (1826_CR10) 1984; 10 W. Halberstadt (1826_CR11) 2008; 38 N.A.M. Isa (1826_CR17) 2009; 55 F. Yang (1826_CR1) 2009; 36 S. Shamshirband (1826_CR24) 2014; 55 C.T. Chang (1826_CR5) 2011; 27 1826_CR20 X. Yan (1826_CR9) 2012; 97 1826_CR14 R.L. Haupt (1826_CR12) 2004 1826_CR15 S. Talatahari (1826_CR8) 2012; 17 1826_CR23 1826_CR13 I.B. Aydilek (1826_CR21) 2013; 233 1826_CR18 1826_CR19 1826_CR7 M.J. Li (1826_CR16) 2008; 20 J. Nayak (1826_CR22) 2014; 27 1826_CR6 1826_CR3 C.D. Manning (1826_CR2) 2008 1826_CR4 |
| References_xml | – ident: CR19 – ident: CR18 – volume: 97 start-page: 241 year: 2012 end-page: 250 ident: CR9 article-title: A new approach for data clustering using hybrid artificial bee colony algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.025 – volume: 27 start-page: 339 year: 2014 end-page: 348 ident: CR22 article-title: An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets publication-title: Smart Innov. Syst. Technol. doi: 10.1007/978-3-319-07353-8_40 – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR15 – volume: 55 start-page: 2145 issue: 4 year: 2009 end-page: 2153 ident: CR17 article-title: Adaptive fuzzy moving K-means clustering algorithm for image segmentation publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2009.5373781 – volume: 17 start-page: 1312 issue: 3 year: 2012 end-page: 1319 ident: CR8 article-title: Imperialist competitive algorithm combined with chaos for global optimization publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.08.021 – year: 2008 ident: CR2 publication-title: Introduction to Information Retrieval, Vol. 1 doi: 10.1017/CBO9780511809071 – volume: 27 start-page: 995 year: 2011 end-page: 1009 ident: CR5 article-title: A fuzzy K-means clustering algorithm using cluster center displacement publication-title: J. Inf. Sci. Eng. – volume: 36 start-page: 9847 issue: 6 year: 2009 end-page: 9852 ident: CR1 article-title: An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.003 – ident: CR13 – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: CR10 article-title: FCM: The fuzzy C-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: CR6 – ident: CR7 – volume: 55 start-page: 212 year: 2014 end-page: 226 ident: CR24 article-title: FICCA: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks publication-title: Measurement doi: 10.1016/j.measurement.2014.04.034 – year: 2004 ident: CR12 publication-title: Practical Genetic Algorithms, 2nd edn – ident: CR23 – volume: 20 start-page: 1519 issue: 11 year: 2008 end-page: 1534 ident: CR16 article-title: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.88 – ident: CR20 – volume: 38 start-page: 165 issue: 2 year: 2008 end-page: 170 ident: CR11 article-title: Fuzzy clustering to detect tuberculous meningitis-associated hyper density in CT images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.09.002 – volume: 233 start-page: 25 year: 2013 end-page: 35 ident: CR21 article-title: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm publication-title: Inf. Sci. (NY) doi: 10.1016/j.ins.2013.01.021 – ident: 1826_CR4 doi: 10.1109/FUZZ.2001.1007282 – ident: 1826_CR6 doi: 10.1007/978-1-4757-0450-1 – volume-title: Practical Genetic Algorithms, 2nd edn year: 2004 ident: 1826_CR12 – volume-title: Introduction to Information Retrieval, Vol. 1 year: 2008 ident: 1826_CR2 doi: 10.1017/CBO9780511809071 – volume: 20 start-page: 1519 issue: 11 year: 2008 ident: 1826_CR16 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.88 – ident: 1826_CR18 doi: 10.1109/IWACI.2010.5585234 – ident: 1826_CR23 doi: 10.1016/j.apm.2014.11.041 – volume: 10 start-page: 191 year: 1984 ident: 1826_CR10 publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: 1826_CR15 doi: 10.1109/WCICA.2006.1714253 – ident: 1826_CR13 – ident: 1826_CR14 doi: 10.1109/FUZZY.2006.1681719 – volume: 233 start-page: 25 year: 2013 ident: 1826_CR21 publication-title: Inf. Sci. (NY) doi: 10.1016/j.ins.2013.01.021 – volume: 55 start-page: 212 year: 2014 ident: 1826_CR24 publication-title: Measurement doi: 10.1016/j.measurement.2014.04.034 – volume: 38 start-page: 165 issue: 2 year: 2008 ident: 1826_CR11 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.09.002 – volume: 55 start-page: 2145 issue: 4 year: 2009 ident: 1826_CR17 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2009.5373781 – volume: 17 start-page: 1312 issue: 3 year: 2012 ident: 1826_CR8 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.08.021 – volume: 27 start-page: 339 year: 2014 ident: 1826_CR22 publication-title: Smart Innov. Syst. Technol. doi: 10.1007/978-3-319-07353-8_40 – volume: 36 start-page: 9847 issue: 6 year: 2009 ident: 1826_CR1 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.003 – ident: 1826_CR3 doi: 10.1007/978-81-322-2208-8_14 – ident: 1826_CR19 doi: 10.1109/CICN.2010.80 – volume: 97 start-page: 241 year: 2012 ident: 1826_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.025 – ident: 1826_CR7 doi: 10.1109/ICNN.1995.488968 – volume: 27 start-page: 995 year: 2011 ident: 1826_CR5 publication-title: J. Inf. Sci. Eng. – ident: 1826_CR20 |
| SSID | ssj0061873 ssj0001916267 |
| Score | 2.1578252 |
| Snippet | In this paper, we proposed two hybrid data clustering algorithms that are called ICAFKM and PSOFKM. ICAFKM combined the advantageous aspects of Fuzzy K-Means... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3545 |
| SubjectTerms | Engineering Humanities and Social Sciences multidisciplinary Research Article - Computer Engineering and Computer Science Science |
| Title | Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering |
| URI | https://link.springer.com/article/10.1007/s13369-015-1826-3 |
| Volume | 40 |
| WOSCitedRecordID | wos000364971200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 1319-8025 databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8R4KQdOsEi0SdP0OA0mJmBMDKbdqjRNYdLaja4DsV9PkrWMSYAEx0ruQ45jf6ntzwCccBUSBQlDRIXaTSRSBxQeSYo0kQrjjAShaR_r3LjNJut2vVbexz0qqt2LlKTx1LNmN4ypru1xkMbECC-CJRXtmJ7XcN_uzH6sKMBjpipN3TG1mEkzW7pbh6kIX6Q2v3vkfHCaz4yagFNf_9enboC1HF_C6tQgNsGCTLbA6hfWwW3w0sgpItQVrI8nk3d4jW6lilkV2MotCbbfeBrDO-VQ4rxTswJ5EsJGPDQ2q6wD1gzmNsVHsNp_GqS97DmGCgXDC55xWOuPNQuDessOeKxfPtSuUD55AQmbsQwRLKg6eEWRppsPaGiJMAo8T3p2QIRnCYfKwHWVdwhYpBOHClZ43MXSIo60aRjiXVBKBoncA5DZWATngsqIYBJ4jOszj3Q5IcQRxJNlcF6o3Bc5LbmejtH3Z4TKWpu-0qavtenjMjj9vGU45eT4TfisWCM_356jn6X3_yR9AFZss8i6uuUQlLJ0LI_AsnjNeqP02JjlB7I42pM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gIAEH3ojxzIETrNLapGl6nAbTpj2Y2Jh2q9I0hUl70XUg9utJspYxCZDgWMl9yHHsz7X9BYArJkMix0FgEC53Ew5lgsJCQQxFpEIZxX6gx8c6NafRoN2u20zmuCdpt3taktSeejHshhBRvT22oTCxgVbBGpYBSxHmP7Q6ix8rEvDoU5Xm7piYVJeZTTWtQ2WET0ub3z1yOTgtV0Z1wCnt_OtTd8F2gi9hYW4Qe2BFDPfB1hfWwQPwUkkoIuQVLE1ns3dYNepCxqwcbCaWBFtvLBrAe-lQBsmkZg6yYQArg7G2WWkdsKgxt24-goX-0yjqxc8DKFEwvGUxg8X-VLEwyLccgsfSXbtYNpKTFwxuURobGHEiE68wVHTzPglMHoS-6wrX8jF3TW4T4TuO9A4-DVXhUMIKlzlImNgWFgkCdAQyw9FQHANILcT9PCcixAj7LmUq5xEOwxjbHLsiC_Kpyj2e0JKr0zH63oJQWWnTk9r0lDY9lAXXn7eM55wcvwnfpGvkJdtz8rP0yZ-kL8FGuV2vebVKo3oKNi294KrT5Qxk4mgqzsE6f417k-hCm-gH-g3ddw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8UjdEHv4342Qef1AW2lq57JCCRgEiCEt6Wru2UBAbC0Mhfb1s2kURNjI9Lbh-5Xnu_2939DoALplwix0JYhKvdhEMVoLBQEksTqVBGcSBM-1i77jYatNPxmsmc03Fa7Z6mJGc9DZqlKYpzQxHm5o1vCBFd51OwND620DJYwbqOXofrrfb8J4sCP2bC0uxoJjY1KWdbd-5Q5e3TNOd3j1x0VItZUuN8Klv__uxtsJngTlicGcoOWJLRLtj4wka4B16qCXWEuoKVyXT6DmvWnVS-7Bo2EwuDrTc26sN7ddD0kw7Oa8giAav9obFlZTWwZLC4KUqCxd7TYNSNn_tQoWNYZjGDpd5EszOot-yDx8rNQ-nWSiYyWNyhNLYw4kQFZGGoaegDImwuwsDzpOcEmHs2LxAZuK46NQIa6oSighsec5G0cUE6RAh0ADLRIJKHAFIH8SDPiQwxwoFHmY6FpMswxgWOPZkF-VT9Pk_oyvXUjJ4_J1rW2vSVNn2tTR9lweXnLcMZV8dvwlfpevnJth3_LH30J-lzsNYsV_x6tVE7BuuOWW9dAHMCMvFoIk_BKn-Nu-PRmbHWDySR5ls |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Fuzzy+K-Means%2C+Particle+Swarm+Optimization%2C+and+Imperialist+Competitive+Algorithm+for+Data+Clustering&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Emami%2C+Hojjat&rft.au=Derakhshan%2C+Farnaz&rft.date=2015-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=40&rft.issue=12&rft.spage=3545&rft.epage=3554&rft_id=info:doi/10.1007%2Fs13369-015-1826-3&rft.externalDocID=10_1007_s13369_015_1826_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon |