Multiple instance classification via quadratic programming
Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike traditional supervised learning, labels are not known for the instances in MIL. Existing approaches in the literature make use of certain assum...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 83; číslo 4; s. 639 - 670 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike traditional supervised learning, labels are not known for the instances in MIL. Existing approaches in the literature make use of certain assumptions regarding the instance labels and propose mixed integer quadratic programs, which introduce computational difficulties. In this study, we present a novel quadratic programming (QP)-based approach to classify bags. Solution of our QP formulation links the instance-level contributions to the bag label estimates, and provides a linear bag classifier along with a decision threshold. Our approach imposes no additional constraints on relating instance labels to bag labels and can be adapted to learning applications with different MIL assumptions. Unlike existing specialized heuristic approaches to solve previous MIL formulations, our QP models can be directly solved to optimality using any commercial QP solver. Also, kindly confirm Our computational experiments show that proposed QP formulation is efficient in terms of solution time, overcoming a main drawback of previous optimization algorithms for MIL. We demonstrate the classification success of our approach compared to the state-of-the-art methods on a wide range of real world datasets. |
|---|---|
| AbstractList | Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike traditional supervised learning, labels are not known for the instances in MIL. Existing approaches in the literature make use of certain assumptions regarding the instance labels and propose mixed integer quadratic programs, which introduce computational difficulties. In this study, we present a novel quadratic programming (QP)-based approach to classify bags. Solution of our QP formulation links the instance-level contributions to the bag label estimates, and provides a linear bag classifier along with a decision threshold. Our approach imposes no additional constraints on relating instance labels to bag labels and can be adapted to learning applications with different MIL assumptions. Unlike existing specialized heuristic approaches to solve previous MIL formulations, our QP models can be directly solved to optimality using any commercial QP solver. Also, kindly confirm Our computational experiments show that proposed QP formulation is efficient in terms of solution time, overcoming a main drawback of previous optimization algorithms for MIL. We demonstrate the classification success of our approach compared to the state-of-the-art methods on a wide range of real world datasets. |
| Audience | Academic |
| Author | Küçükaşcı, Emel Şeyma Baydoğan, Mustafa Gökçe Taşkın, Z. Caner |
| Author_xml | – sequence: 1 givenname: Emel Şeyma surname: Küçükaşcı fullname: Küçükaşcı, Emel Şeyma email: eskucukasci@ticaret.edu.tr organization: Department of Industrial Engineering, Istanbul Commerce University – sequence: 2 givenname: Mustafa Gökçe surname: Baydoğan fullname: Baydoğan, Mustafa Gökçe organization: Department of Industrial Engineering, Boğaziçi University – sequence: 3 givenname: Z. Caner surname: Taşkın fullname: Taşkın, Z. Caner organization: Department of Industrial Engineering, Boğaziçi University |
| BookMark | eNp9kE1LxDAQhoOs4Lr6BzwVPHedSdsk9bYsfsGKFz2HbJqWLG26m7SC_964FQQPSw5DhveZYZ5LMnO9M4TcICwRgN8FBFGKFCimgEghhTMyx4JnKS2RzcgcSlqkBQBekMsQdgBQioLOyf3r2A5235rEujAop02iWxWCra1Wg-1d8mlVchhV5eNXJ3vfN151nXXNFTmvVRvM9W9dkI_Hh_f1c7p5e3pZrzappkIMabZVvBSoEZnOqaK1oJkBqHWhuTA8Z2g0UIZ1vq1EnmGV8a1RRhVQZJyBzhbkdpobdx9GEwa560fv4kpJWQmCMSFYTC2nVKNaI62r-8ErHV9lOqujrdrG_oojMJrzXERATID2fQje1FLb4XhyBG0rEeSPWjmplVGtPKqVEFH6D9172yn_dRrKJijEsGuM_zvjBPUNchyMoQ |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3412223 crossref_primary_10_1007_s40747_023_01133_0 |
| Cites_doi | 10.1007/s10489-005-5602-z 10.1007/s10479-012-1241-z 10.1016/j.disopt.2015.03.002 10.1016/j.patcog.2014.07.022 10.1109/TPAMI.2010.155 10.1121/1.4707424 10.1109/TPAMI.2006.248 10.1016/j.apnum.2009.05.013 10.1109/TNNLS.2013.2254721 10.1016/S0004-3702(96)00034-3 10.1007/s10115-006-0029-3 10.1007/s10479-012-1193-3 10.1007/s10957-007-9343-5 10.1109/TNNLS.2016.2519102 10.1007/s10994-013-5429-5 10.1017/S026988890999035X 10.1109/TKDE.2005.50 10.1016/j.patcog.2017.10.009 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G 10.1016/j.artint.2013.06.003 10.1109/TKDE.2009.58 10.1145/1273496.1273510 10.1109/ICPR.2010.715 10.1007/978-3-642-04174-7_2 10.1145/1553374.1553534 10.1007/978-3-319-10470-6_29 10.1007/978-3-540-89689-0_76 10.1145/1015330.1015405 10.1145/1273496.1273643 10.1007/978-3-642-24471-1_13 10.1007/978-3-540-39857-8_42 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-021-01120-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 670 |
| ExternalDocumentID | A710624748 10_1007_s10898_021_01120_0 |
| GrantInformation_xml | – fundername: Türkiye Bilimler Akademisi grantid: 2020 funderid: http://dx.doi.org/10.13039/501100004412 |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c288t-3ba7981c116c42a2f823e00fc5c78e7461ec0261f4bd8431d37beaea5053760c3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741634100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Wed Nov 05 03:35:17 EST 2025 Sat Nov 29 10:36:19 EST 2025 Sat Nov 29 01:59:36 EST 2025 Tue Nov 18 21:06:45 EST 2025 Fri Feb 21 02:45:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Quadratic programming Multiple instance learning Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-3ba7981c116c42a2f823e00fc5c78e7461ec0261f4bd8431d37beaea5053760c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2690866886 |
| PQPubID | 29930 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2690866886 gale_infotracacademiconefile_A710624748 crossref_citationtrail_10_1007_s10898_021_01120_0 crossref_primary_10_1007_s10898_021_01120_0 springer_journals_10_1007_s10898_021_01120_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20220800 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Zhou, Zhang (CR38) 2007; 11 Carbonneau, Cheplygina, Granger, Gagnon (CR5) 2018; 77 Fischetti (CR11) 2016; 22 CR19 CR17 Foulds, Frank (CR12) 2010; 25 CR15 CR37 CR36 Chen, Bi, Wang (CR6) 2006; 28 CR34 CR10 CR32 CR31 CR30 Briggs, Lakshminarayanan, Neal, Fern, Raich, Hadley, Hadley, Betts (CR3) 2012; 131 Şeref, Chaovalitwongse, Brooks (CR26) 2014; 216 Zhou, Jiang, Li (CR35) 2005; 22 Doran, Ray (CR9) 2014; 97 Fu, Robles-Kelly, Zhou (CR14) 2011; 33 Mangasarian, Wild (CR23) 2008; 137 CR2 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR24) 2011; 12 CR4 Ketchen, Shook (CR18) 1996; 17 Poursaeidi, Kundakcioglu (CR25) 2014; 216 Dietterich, Lathrop, Lozano-Pérez (CR8) 1997; 89 Amores (CR1) 2013; 201 CR29 CR28 CR27 Cheplygina, Tax, Loog (CR7) 2015; 48 Kundakcioglu, Seref, Pardalos (CR20) 2010; 60 CR22 Wei, Wu, Zhou (CR33) 2017; 28 Huang, Ling (CR16) 2005; 17 Fu, Lu, Ting, Zhang (CR13) 2013; 24 Li, Yeung (CR21) 2010; 22 OL Mangasarian (1120_CR23) 2008; 137 F Pedregosa (1120_CR24) 2011; 12 1120_CR4 Z Fu (1120_CR14) 2011; 33 1120_CR2 OE Kundakcioglu (1120_CR20) 2010; 60 MA Carbonneau (1120_CR5) 2018; 77 DJ Ketchen Jr (1120_CR18) 1996; 17 1120_CR27 O Şeref (1120_CR26) 2014; 216 1120_CR29 XS Wei (1120_CR33) 2017; 28 1120_CR28 V Cheplygina (1120_CR7) 2015; 48 WJ Li (1120_CR21) 2010; 22 1120_CR22 1120_CR30 Z Fu (1120_CR13) 2013; 24 G Doran (1120_CR9) 2014; 97 1120_CR10 1120_CR32 1120_CR31 J Amores (1120_CR1) 2013; 201 TG Dietterich (1120_CR8) 1997; 89 ZH Zhou (1120_CR38) 2007; 11 M Fischetti (1120_CR11) 2016; 22 F Briggs (1120_CR3) 2012; 131 J Foulds (1120_CR12) 2010; 25 1120_CR19 Y Chen (1120_CR6) 2006; 28 ZH Zhou (1120_CR35) 2005; 22 1120_CR15 J Huang (1120_CR16) 2005; 17 1120_CR37 1120_CR17 MH Poursaeidi (1120_CR25) 2014; 216 1120_CR34 1120_CR36 |
| References_xml | – volume: 22 start-page: 135 issue: 2 year: 2005 end-page: 147 ident: CR35 article-title: Multi-instance learning based web mining publication-title: Appl. Intell. doi: 10.1007/s10489-005-5602-z – ident: CR22 – volume: 216 start-page: 205 issue: 1 year: 2014 end-page: 227 ident: CR25 article-title: Robust support vector machines for multiple instance learning publication-title: Ann. Oper. Res. doi: 10.1007/s10479-012-1241-z – volume: 22 start-page: 183 year: 2016 end-page: 194 ident: CR11 article-title: Fast training of support vector machines with gaussian kernel publication-title: Discr Optim. doi: 10.1016/j.disopt.2015.03.002 – volume: 48 start-page: 264 issue: 1 year: 2015 end-page: 275 ident: CR7 article-title: Multiple instance learning with bag dissimilarities publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.07.022 – volume: 33 start-page: 958 issue: 5 year: 2011 end-page: 977 ident: CR14 article-title: MILIS: multiple instance learning with instance selection publication-title: Pattern Anal. Mach. Intell., IEEE Trans. doi: 10.1109/TPAMI.2010.155 – ident: CR4 – ident: CR2 – ident: CR37 – ident: CR30 – ident: CR10 – volume: 131 start-page: 4640 issue: 6 year: 2012 end-page: 4650 ident: CR3 article-title: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach publication-title: J Acoust. Soc. Am. doi: 10.1121/1.4707424 – volume: 28 start-page: 1931 issue: 12 year: 2006 end-page: 1947 ident: CR6 article-title: MILES: multiple-instance learning via embedded instance selection publication-title: Pattern Anal. Mach. Intell., IEEE Trans. doi: 10.1109/TPAMI.2006.248 – volume: 60 start-page: 358 issue: 4 year: 2010 end-page: 369 ident: CR20 article-title: Multiple instance learning via margin maximization publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2009.05.013 – ident: CR29 – volume: 24 start-page: 1377 issue: 9 year: 2013 end-page: 1389 ident: CR13 article-title: Learning sparse kernel classifiers for multi-instance classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2254721 – ident: CR27 – volume: 89 start-page: 31 issue: 1 year: 1997 end-page: 71 ident: CR8 article-title: Solving the multiple instance problem with axis-parallel rectangles publication-title: Artif. intell. doi: 10.1016/S0004-3702(96)00034-3 – volume: 11 start-page: 155 issue: 2 year: 2007 end-page: 170 ident: CR38 article-title: Solving multi-instance problems with classifier ensemble based on constructive clustering publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-006-0029-3 – ident: CR19 – volume: 216 start-page: 229 issue: 1 year: 2014 end-page: 255 ident: CR26 article-title: Relaxing support vectors for classification publication-title: Ann. Oper. Res. doi: 10.1007/s10479-012-1193-3 – ident: CR15 – volume: 137 start-page: 555 issue: 3 year: 2008 end-page: 568 ident: CR23 article-title: Multiple instance classification via successive linear programming publication-title: J. Optim. Theor. Appl. doi: 10.1007/s10957-007-9343-5 – ident: CR17 – ident: CR31 – volume: 28 start-page: 975 issue: 4 year: 2017 end-page: 987 ident: CR33 article-title: Scalable algorithms for multi-instance learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2519102 – volume: 97 start-page: 79 issue: 1–2 year: 2014 end-page: 102 ident: CR9 article-title: A theoretical and empirical analysis of support vector machine methods for multiple-instance classification publication-title: Mach. Learn. doi: 10.1007/s10994-013-5429-5 – volume: 12 start-page: 2825 issue: Oct year: 2011 end-page: 2830 ident: CR24 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – ident: CR32 – volume: 25 start-page: 1 issue: 01 year: 2010 end-page: 25 ident: CR12 article-title: A review of multi-instance learning assumptions publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988890999035X – ident: CR34 – ident: CR36 – volume: 17 start-page: 299 issue: 3 year: 2005 end-page: 310 ident: CR16 article-title: Using AUC and accuracy in evaluating learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.50 – volume: 77 start-page: 329 year: 2018 end-page: 353 ident: CR5 article-title: Multiple instance learning: a survey of problem characteristics and applications publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.009 – volume: 17 start-page: 441 issue: 6 year: 1996 end-page: 458 ident: CR18 article-title: The application of cluster analysis in strategic management research: an analysis and critique publication-title: Strateg. Manage. J. doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G – volume: 201 start-page: 81 year: 2013 end-page: 105 ident: CR1 article-title: Multiple instance classification: review, taxonomy and comparative study publication-title: Artif. Intell. doi: 10.1016/j.artint.2013.06.003 – volume: 22 start-page: 76 issue: 1 year: 2010 end-page: 89 ident: CR21 article-title: MILD: multiple-instance learning via disambiguation publication-title: Knowl. Data Eng., IEEE Trans. doi: 10.1109/TKDE.2009.58 – ident: CR28 – ident: 1120_CR4 doi: 10.1145/1273496.1273510 – volume: 24 start-page: 1377 issue: 9 year: 2013 ident: 1120_CR13 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2254721 – volume: 60 start-page: 358 issue: 4 year: 2010 ident: 1120_CR20 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2009.05.013 – ident: 1120_CR31 doi: 10.1109/ICPR.2010.715 – ident: 1120_CR22 doi: 10.1007/978-3-642-04174-7_2 – volume: 48 start-page: 264 issue: 1 year: 2015 ident: 1120_CR7 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.07.022 – volume: 22 start-page: 76 issue: 1 year: 2010 ident: 1120_CR21 publication-title: Knowl. Data Eng., IEEE Trans. doi: 10.1109/TKDE.2009.58 – ident: 1120_CR29 – volume: 28 start-page: 975 issue: 4 year: 2017 ident: 1120_CR33 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2519102 – volume: 12 start-page: 2825 issue: Oct year: 2011 ident: 1120_CR24 publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 958 issue: 5 year: 2011 ident: 1120_CR14 publication-title: Pattern Anal. Mach. Intell., IEEE Trans. doi: 10.1109/TPAMI.2010.155 – ident: 1120_CR19 – ident: 1120_CR32 – volume: 28 start-page: 1931 issue: 12 year: 2006 ident: 1120_CR6 publication-title: Pattern Anal. Mach. Intell., IEEE Trans. doi: 10.1109/TPAMI.2006.248 – volume: 97 start-page: 79 issue: 1–2 year: 2014 ident: 1120_CR9 publication-title: Mach. Learn. doi: 10.1007/s10994-013-5429-5 – volume: 77 start-page: 329 year: 2018 ident: 1120_CR5 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.009 – ident: 1120_CR15 – ident: 1120_CR36 doi: 10.1145/1553374.1553534 – volume: 25 start-page: 1 issue: 01 year: 2010 ident: 1120_CR12 publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988890999035X – ident: 1120_CR17 doi: 10.1007/978-3-319-10470-6_29 – volume: 17 start-page: 441 issue: 6 year: 1996 ident: 1120_CR18 publication-title: Strateg. Manage. J. doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G – volume: 22 start-page: 135 issue: 2 year: 2005 ident: 1120_CR35 publication-title: Appl. Intell. doi: 10.1007/s10489-005-5602-z – volume: 201 start-page: 81 year: 2013 ident: 1120_CR1 publication-title: Artif. Intell. doi: 10.1016/j.artint.2013.06.003 – volume: 11 start-page: 155 issue: 2 year: 2007 ident: 1120_CR38 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-006-0029-3 – volume: 17 start-page: 299 issue: 3 year: 2005 ident: 1120_CR16 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.50 – ident: 1120_CR30 doi: 10.1007/978-3-540-89689-0_76 – volume: 89 start-page: 31 issue: 1 year: 1997 ident: 1120_CR8 publication-title: Artif. intell. doi: 10.1016/S0004-3702(96)00034-3 – ident: 1120_CR27 – volume: 137 start-page: 555 issue: 3 year: 2008 ident: 1120_CR23 publication-title: J. Optim. Theor. Appl. doi: 10.1007/s10957-007-9343-5 – ident: 1120_CR28 doi: 10.1145/1015330.1015405 – volume: 131 start-page: 4640 issue: 6 year: 2012 ident: 1120_CR3 publication-title: J Acoust. Soc. Am. doi: 10.1121/1.4707424 – volume: 22 start-page: 183 year: 2016 ident: 1120_CR11 publication-title: Discr Optim. doi: 10.1016/j.disopt.2015.03.002 – volume: 216 start-page: 229 issue: 1 year: 2014 ident: 1120_CR26 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-012-1193-3 – volume: 216 start-page: 205 issue: 1 year: 2014 ident: 1120_CR25 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-012-1241-z – ident: 1120_CR37 doi: 10.1145/1273496.1273643 – ident: 1120_CR10 doi: 10.1007/978-3-642-24471-1_13 – ident: 1120_CR34 doi: 10.1007/978-3-540-39857-8_42 – ident: 1120_CR2 |
| SSID | ssj0009852 |
| Score | 2.3387008 |
| Snippet | Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 639 |
| SubjectTerms | Algorithms Classification Computer Science Heuristic methods Labels Mathematical optimization Mathematics Mathematics and Statistics Mixed integer Operations Research/Decision Theory Optimization Quadratic programming Real Functions Supervised learning |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5k9aAH110Vq6vkIKhooU3TNPW2iOJBRXzhLWTzgAVddbv6-02yqesb9Fg6TcPMZB5k5huAzUTlpCDGxEYRFRMiaVxincUkFYbZiCRnfjbgzUlxdsZub8vz0BRW1dXu9ZWkt9Tvmt2YawfDLv1NbdJjE_Vp6-6YG9hwcXkzgdplfs5OUuI8zq0VDq0y36_xwR19Nspfbke90zlq_m-7CzAfgkzUHWtFC6b0oA3NeoADCue5DXPv0Ajt0-kbhGvVhlagqtB2gKbeWYT901B_iPo-rJQaSRd-u3ojL2L00hfo6Vkop1gSheqve7v-ElwfHV4dHMdh-kIsMWOjOOuJomSpTFMqCRbYMJzpJDEylwXTBaGpli6BM6SnmA1DVFb0tNAi9wgxicyWoTF4GOgVQD2hjMEUGyIMKbGlK4lKKVOJUJjmOIK0FgKXAZrcTci44xNQZcdNbrnJPTd5EsHu2zePY2COX6m3nGy5O7V2ZSlC84Hdn8O_4l0baFFstZZF0KnFz8NxrjimpU39KGM0gr1a3JPXP_939W_kazCLXXuFLzDsQGM0fNbrMCNfRv1quOHV_BVHvPNw priority: 102 providerName: Springer Nature |
| Title | Multiple instance classification via quadratic programming |
| URI | https://link.springer.com/article/10.1007/s10898-021-01120-0 https://www.proquest.com/docview/2690866886 |
| Volume | 83 |
| WOSCitedRecordID | wos000741634100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8I-KAPIqjxEMg-mKjRxrbbbbu-ECAQE71zA4rgS9PrR3KJHB938PfbKT3Pj8iLL5Nstttt9tfOzrQzvwF4Tn0jlIiRRC88EcJJ0vJQE8Fs1MkiaXSuDXj0UQ0G-vi47cqG26SEVc50YlbU_szhHvlbntw4LaXWcuv8gmDVKDxdLSU0FmApWTYMQ7r6vJuT7upccYe2vCFN0sclaaakzmlMLuPoTLPkQtHffkx_que_zknz72d_-X8H_hAeFMOz2r6ZKStwJ4xX4f4vdISrsFIW-qR6WdioXz2Cd_0ScliNsiXpQuXQ4sYQo4xqdT2y1cWV9TiXXFUCvk5Tj4_hy_7e5933pBRcII5rPSX10KpWM8eYdIJbHjWvA6XRNU7poIRkwaHPFsXQ62R5-FoNgw22yaQw1NVPYHF8Ng5PoRpaHyOXPAobRctTu1Z4JrWn1nPZ8B6w2dc2rrCRY1GM72bOo4wImYSQyQgZ2oPXP585v-HiuLX1CwTR4EJNPTtb8g3S-JDyymwn20ryNFF1D9ZnyJmygidmDlsP3sywn9_-93vXbu_tGdzjmEGRYwjXYXF6eRU24K67no4ml5uwoL6ebMLSzt6gO0hXHxRJsk93UfJPWXYo1WGSXfMtyYPDox-NJvtA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9AC1FbCngAwgQtUgmjuMgIVQBVatuVz0U1Jvx-iGtBNvHbov4U_xGPF6H5SF664FzksnD37zimW8AHheuFo0IgQcnHBfCSt6ir7goTVAxIqlVmg34sd8MBurwsN1fgO9dLwyVVXY2MRlqd2TpH_lLjGmcklIp-eb4hNPUKNpd7UZozGCx6799jSnb5PXOu7i-TxC33h-83eZ5qgC3qNSUV0PTtKq0ZSmtQINBYeWLItjaNso3QpbeUmISxNCp6F5d1Qy98aZOzCeFraLcK3BVELMYlQri_pzkV6UJP0WLNa-j_c9NOrlVT1EzG1LyXsaUrfjNEf7pDv7al03ubuvW__ahbsPNHFizzZkmLMOCH6_A0i90iyuwnA3ZhD3LbNvP78CrvVxSyUYpUraeWcooqIQqoZadjww7OTOOdMWyXND2JUpchQ-X8kZ3YXF8NPb3gA2NCwElBmGCaDGe1wpXSuUK41DW2IOyW11tM9s6Df34rOc80YQIHRGhEyJ00YMXP685nnGNXHj2UwKNJkMUJVuT-yni8xGll96MsaPEqIiqB-sdUnS2UBM9h0kPNjqszQ__-75rF0t7BNe3D_b6ur8z2L0PN5C6RVK95DosTk_P_AO4Zs-no8npw6Q7DD5dNgZ_AE6fTtM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgJZWLBTwAQQIrCYTx3GQEKooK6qW1R4AVVyM1w9pJdg-dlvEX-PX4fE6LA_RWw-c40xe37zimW8AHhSuFo0IgQcnHBfCSt6ir7goTVAxIqlVmg34Ya8ZDNT-fjtcgu9dLwyVVXY2MRlqd2DpH_kmxjROSamU3Ay5LGK43X95eMRpghTttHbjNOYQ2fXfvsb0bfpiZzt-64eI_dfvXr3hecIAt6jUjFcj07SqtGUprUCDQWHliyLY2jbKN0KW3lKSEsTIqehqXdWMvPGmTiwoha2i3AtwMS5sqZxwWH9cEP6qNO2naLHmdfQFuWEnt-0pamxDSuTLmL4VvznFP13DX3u0yfX1r__PL-0GXMsBN9uaa8gKLPnJKlz9hYZxFVaygZuyx5mF-8lNeP42l1qycYqgrWeWMg0qrUpoZqdjw45OjCMdsiwXun2JEtfg_bk80TosTw4m_hawkXEhoMQgTBAtxnWtcKVUrjAOZY09KLsvrW1mYadhIJ_1gj-a0KEjOnRChy568PTnOYdzDpIzVz8iAGkyUFGyNbnPIt4fUX3prRhTSowKqnqw0aFGZ8s11QvI9OBZh7vF4X9f9_bZ0u7D5Qg9vbcz2L0DV5CaSFIZ5QYsz45P_F24ZE9n4-nxvaRGDD6dNwR_APhNV78 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+instance+classification+via+quadratic+programming&rft.jtitle=Journal+of+global+optimization&rft.au=K%C3%BC%C3%A7%C3%BCka%C5%9Fc%C4%B1%2C+Emel+%C5%9Eeyma&rft.au=Baydo%C4%9Fan%2C+Mustafa+G%C3%B6k%C3%A7e&rft.au=Ta%C5%9Fk%C4%B1n%2C+Z.+Caner&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=83&rft.issue=4&rft.spage=639&rft.epage=670&rft_id=info:doi/10.1007%2Fs10898-021-01120-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |