An Asymptotic Analysis of Labeled and Unlabeled k-Trees

In this paper we provide a systematic treatment of several shape parameters of (random) k -trees. Our research is motivated by many important algorithmic applications of k -trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k -trees are also a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 75; číslo 4; s. 579 - 605
Hlavní autoři: Drmota, Michael, Jin, Emma Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2016
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we provide a systematic treatment of several shape parameters of (random) k -trees. Our research is motivated by many important algorithmic applications of k -trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k -trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k -trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k -tree. In particular we solve the asymptotic counting problem for unlabeled k -trees. By applying a proper singularity analysis of generating functions we show that the numbers U k ( n ) of unlabeled k -trees of size n are asymptotically given by U k ( n ) ∼ c k n - 5 / 2 ρ k - n , where c k > 0 and ρ k > 0 denotes the radius of convergence of the generating function U ( z ) = ∑ n ≥ 0 U k ( n ) z n .
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-015-0039-1