Using improved density peak clustering algorithm for flower cluster identification and apple central and peripheral flower detection

•A method for apple flowers recognition based on YOLOv8n model was proposed.•An improved Single-Layer DPC algorithm was used to automatically determine different clusters.•A Double-Layer DPC algorithm was applied to rectify any offsets of centres of clusters.•The proposed method provided reference f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers and electronics in agriculture Ročník 232; s. 110095
Hlavní autoři: Geng, Mingyang, Shang, Yuying, Xiang, Shiyu, Wang, Jiachen, Wang, Lei, Song, Huaibo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2025
Témata:
ISSN:0168-1699
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A method for apple flowers recognition based on YOLOv8n model was proposed.•An improved Single-Layer DPC algorithm was used to automatically determine different clusters.•A Double-Layer DPC algorithm was applied to rectify any offsets of centres of clusters.•The proposed method provided reference for mechanical and chemical thinning of flowers. Apple flower detection and positioning are crucial for the mechanical and chemical thinning of flowers, where typically only one or two of the strongest flowers in each cluster are retained. An improved method is proposed that leverages the YOLOv8n model for accurate flower detection. The DPC algorithm is enhanced to automatically determine the number of flower clusters and accurately identify the central flowers within those clusters. To evaluate the performance of the enhanced Single-Layer DPC algorithm, it was compared with several other clustering methods, including DPC, DPC with Shared Nearest Neighbors (DPC-SNN), K-means, K-medoids, Gaussian Mixture Model (GMM), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Spectral Clustering (SC), minibatch and 3W-PEDP. The results demonstrated that the proposed method achieved that the Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) were 0.7037 and 0.6043, respectively, on the Flame dataset, surpassing the highest scores obtained by other methods (0.5886 and 0.5116, respectively). Additionally, the improved algorithm reduced the deviation between the clustering center produced by the Single-Layer DPC and the true central flower. Overall, the algorithm effectively reduces clustering center deviations, showcasing its capability to accurately detect and position apple flowers.
AbstractList Apple flower detection and positioning are crucial for the mechanical and chemical thinning of flowers, where typically only one or two of the strongest flowers in each cluster are retained. An improved method is proposed that leverages the YOLOv8n model for accurate flower detection. The DPC algorithm is enhanced to automatically determine the number of flower clusters and accurately identify the central flowers within those clusters. To evaluate the performance of the enhanced Single-Layer DPC algorithm, it was compared with several other clustering methods, including DPC, DPC with Shared Nearest Neighbors (DPC-SNN), K-means, K-medoids, Gaussian Mixture Model (GMM), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Spectral Clustering (SC), minibatch and 3W-PEDP. The results demonstrated that the proposed method achieved that the Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) were 0.7037 and 0.6043, respectively, on the Flame dataset, surpassing the highest scores obtained by other methods (0.5886 and 0.5116, respectively). Additionally, the improved algorithm reduced the deviation between the clustering center produced by the Single-Layer DPC and the true central flower. Overall, the algorithm effectively reduces clustering center deviations, showcasing its capability to accurately detect and position apple flowers.
•A method for apple flowers recognition based on YOLOv8n model was proposed.•An improved Single-Layer DPC algorithm was used to automatically determine different clusters.•A Double-Layer DPC algorithm was applied to rectify any offsets of centres of clusters.•The proposed method provided reference for mechanical and chemical thinning of flowers. Apple flower detection and positioning are crucial for the mechanical and chemical thinning of flowers, where typically only one or two of the strongest flowers in each cluster are retained. An improved method is proposed that leverages the YOLOv8n model for accurate flower detection. The DPC algorithm is enhanced to automatically determine the number of flower clusters and accurately identify the central flowers within those clusters. To evaluate the performance of the enhanced Single-Layer DPC algorithm, it was compared with several other clustering methods, including DPC, DPC with Shared Nearest Neighbors (DPC-SNN), K-means, K-medoids, Gaussian Mixture Model (GMM), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Spectral Clustering (SC), minibatch and 3W-PEDP. The results demonstrated that the proposed method achieved that the Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) were 0.7037 and 0.6043, respectively, on the Flame dataset, surpassing the highest scores obtained by other methods (0.5886 and 0.5116, respectively). Additionally, the improved algorithm reduced the deviation between the clustering center produced by the Single-Layer DPC and the true central flower. Overall, the algorithm effectively reduces clustering center deviations, showcasing its capability to accurately detect and position apple flowers.
ArticleNumber 110095
Author Xiang, Shiyu
Wang, Jiachen
Wang, Lei
Song, Huaibo
Geng, Mingyang
Shang, Yuying
Author_xml – sequence: 1
  givenname: Mingyang
  surname: Geng
  fullname: Geng, Mingyang
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
– sequence: 2
  givenname: Yuying
  surname: Shang
  fullname: Shang, Yuying
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
– sequence: 3
  givenname: Shiyu
  surname: Xiang
  fullname: Xiang, Shiyu
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
– sequence: 4
  givenname: Jiachen
  surname: Wang
  fullname: Wang, Jiachen
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
– sequence: 5
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
– sequence: 6
  givenname: Huaibo
  surname: Song
  fullname: Song, Huaibo
  email: songhuaibo@nwsuaf.edu.cn
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
BookMark eNp9kDtPwzAUhT0UiRb4BwweWRLsvGwvSKjiJVViobNlnOvWJYmDnRZ154fjkLIyXd17z3ekcxZo1rkOELqmJKWEVre7VLu2V5s0I1mZUkqIKGdoHl88oZUQ52gRwo7EXXA2R9_rYLsNtm3v3QFqXEMX7HDEPagPrJt9GMCPAtVsnLfDtsXGeWwa9wX-749tpAZrrFaDdR1WXY1V3zeAdbx71fxe-mjUb2FcT3gNA-iRuERnRjUBrk7zAq0fH96Wz8nq9elleb9KdMb5kOR5aUowoqgYy1RdQlEyYjgRjNeGa51pYipdsJJoA5V-J6UxORWC0kpxICq_QDeTbwz7uYcwyNYGDU2jOnD7IPOMkIyJrGBRWkxS7V0IHozsvW2VP0pK5Fi03MmpaDkWLaeiI3Y3YRBjHCx4GbSFTkNtfcwqa2f_N_gBjqSQJw
Cites_doi 10.3390/s21237929
10.1038/nature14539
10.1145/1557019.1557118
10.1016/j.patcog.2007.04.010
10.1016/j.eaef.2019.11.003
10.1016/j.compag.2023.108039
10.1016/j.jobe.2024.111046
10.1109/CISP.2015.7407944
10.3390/horticulturae8100904
10.3844/jcssp.2010.363.368
10.3390/sym12122014
10.1016/j.isprsjprs.2023.02.003
10.1016/j.compag.2024.109389
10.1016/j.asoc.2024.111951
10.1016/j.compag.2023.107765
10.1016/j.compag.2024.108876
10.1007/s10489-018-1238-7
10.1007/s11119-018-9586-1
10.1590/s0100-204x2017001100006
10.3390/electronics10141711
10.1145/1217299.1217303
10.1109/ACCESS.2019.2906949
10.1016/j.compag.2023.107803
10.1016/j.asoc.2023.111217
10.1126/science.1242072
10.1016/j.biosystemseng.2020.03.008
10.1016/j.compag.2023.107734
10.1016/j.ifacol.2023.10.096
10.1016/j.compag.2023.108048
10.1016/j.biosystemseng.2022.05.004
10.1186/1471-2105-8-3
10.1016/j.compag.2018.02.016
10.1109/TPAMI.2002.1033218
10.1016/j.compag.2020.105742
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2025.110095
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2025_110095
S0168169925002017
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEXOQ
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAYXX
ACIEU
ACLOT
ACMHX
ACVFH
ADCNI
ADSLC
AEUPX
AFPUW
AGWPP
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c288t-335f5ef946772ad5e4570f80978df8cc2c0f6c4750cfe6cb05ff3199116a8e0a3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001428118400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Thu Oct 02 21:43:33 EDT 2025
Sat Nov 29 06:57:34 EST 2025
Sat May 24 17:06:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Apple Flower
Flower Cluster Identification
Density Peak Clustering Algorithm
Deep Learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c288t-335f5ef946772ad5e4570f80978df8cc2c0f6c4750cfe6cb05ff3199116a8e0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3200279247
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200279247
crossref_primary_10_1016_j_compag_2025_110095
elsevier_sciencedirect_doi_10_1016_j_compag_2025_110095
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fränti, Sieranoja (b0025) 2018; 48
Wu, Lv, Jiang, Song (b0155) 2020; 178
Zhang, Valente, Wang, Guo, Comas, van Dalfsen, Rijk, Kooistra (b0190) 2023; 197
Shang, Zhang, Song (b0105) 2022; 38
Chen, Ma, Ji, Zhang, Feng, Liu, Li (b0010) 2023; 211
Chang, Yeung (b0005) 2008; 41
Yan, D., Huang, L., Jordan, M., 2009. Fast approximate spectral clustering. Paper presented at the Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. Paris, France.
Issad, Aoudjit, Rodrigues (b0050) 2019; 12
Liu, Ehsani, Toudeshki, Zou, Wang (b0080) 2019; 20
Lv, Liu, Xiang (b0090) 2020; 12
Xia, Chai, Li, Zhang, Sun (b0160) 2023; 209
Khanal, Sapkota, Ahmed, Bhattarai, Karkee (b0065) 2023; 56
Xu, Deng, Wang, Zhang, Song (b0165) 2024; 164
Oliveira, Arduino, Marodin, Almeida, Darde (b0095) 2017; 52
Shang, Xu, Jiao, Wang, Hua, Song (b0110) 2023; 207
Gionis, Mannila, Tsaparas (b0035) 2007; 1
Song, Shang, He (b0120) 2023; 54
Tian, Yang, Wang, Li, Liang (b0130) 2020; 193
Fu, Medico (b0030) 2007; 8
Kamilaris, Prenafeta-Boldú (b0060) 2018; 147
Veenman, Reinders, Backer (b0140) 2002; 24
Tao, Wang, Shen, Lu, Peng, Wei (b0125) 2022; 8
Hussain, He, Schupp, Lyons, Heinemann (b0045) 2023; 207
Vinh, Epps, Bailey (b0150) 2010; 11
Chen, Ji, Zhang, Feng, Li, Ma (b0015) 2024; 220
Velmurugan, Santhanam (b0145) 2010; 6
Li, Gong, Shi, Li, He, Ding, Wang, Ma, Hao, Yang, Cui (b0075) 2023; 211
LeCun, Bengio, Hinton (b0070) 2015; 521
Shang, Geng, Fang, Cai, Wang, Song (b0115) 2024; 226
.
Ye, Yuen, Jin, Zhou, Yin, Jiang, Zhao, Su (b0180) 2024; 98
Ester, Kriegel, Sander, Xu (b0020) 1996
Rodriguez, Laio (b0100) 2014; 344
Ju, Lu, Ding, Cao, Yang (b0055) 2024; 152
Lu, Lin, Chen, Lan, Deng, Niu, Luo (b0085) 2021; 21
Zhang, H., Wan, S., Yue, L., Wu, Z., Zhao, Y., 2015. A new fast object detection architecture combing manually-designed feature and CNN. pp. 572-577
Hu, Zhong (b0040) 2019; 7
Zhang, Mouton, Valente, Kooistra, van Ooteghem, de Hoog, Frans de Jong (b0185) 2022; 221
Upadhyaya, Dixit (b0135) 2016; 8
Yao, Qi, Zhang, Shao, Yang, Li (b0175) 2021; 10
Ju (10.1016/j.compag.2025.110095_b0055) 2024; 152
Shang (10.1016/j.compag.2025.110095_b0110) 2023; 207
Tao (10.1016/j.compag.2025.110095_b0125) 2022; 8
Chen (10.1016/j.compag.2025.110095_b0015) 2024; 220
10.1016/j.compag.2025.110095_b0195
Yao (10.1016/j.compag.2025.110095_b0175) 2021; 10
Chen (10.1016/j.compag.2025.110095_b0010) 2023; 211
Shang (10.1016/j.compag.2025.110095_b0105) 2022; 38
Khanal (10.1016/j.compag.2025.110095_b0065) 2023; 56
Upadhyaya (10.1016/j.compag.2025.110095_b0135) 2016; 8
Veenman (10.1016/j.compag.2025.110095_b0140) 2002; 24
Ye (10.1016/j.compag.2025.110095_b0180) 2024; 98
Zhang (10.1016/j.compag.2025.110095_b0185) 2022; 221
Wu (10.1016/j.compag.2025.110095_b0155) 2020; 178
Liu (10.1016/j.compag.2025.110095_b0080) 2019; 20
Issad (10.1016/j.compag.2025.110095_b0050) 2019; 12
Lu (10.1016/j.compag.2025.110095_b0085) 2021; 21
10.1016/j.compag.2025.110095_b0170
Ester (10.1016/j.compag.2025.110095_b0020) 1996
Shang (10.1016/j.compag.2025.110095_b0115) 2024; 226
Xia (10.1016/j.compag.2025.110095_b0160) 2023; 209
Fu (10.1016/j.compag.2025.110095_b0030) 2007; 8
Chang (10.1016/j.compag.2025.110095_b0005) 2008; 41
Hu (10.1016/j.compag.2025.110095_b0040) 2019; 7
Velmurugan (10.1016/j.compag.2025.110095_b0145) 2010; 6
Lv (10.1016/j.compag.2025.110095_b0090) 2020; 12
Xu (10.1016/j.compag.2025.110095_b0165) 2024; 164
Oliveira (10.1016/j.compag.2025.110095_b0095) 2017; 52
Fränti (10.1016/j.compag.2025.110095_b0025) 2018; 48
Kamilaris (10.1016/j.compag.2025.110095_b0060) 2018; 147
LeCun (10.1016/j.compag.2025.110095_b0070) 2015; 521
Gionis (10.1016/j.compag.2025.110095_b0035) 2007; 1
Li (10.1016/j.compag.2025.110095_b0075) 2023; 211
Zhang (10.1016/j.compag.2025.110095_b0190) 2023; 197
Song (10.1016/j.compag.2025.110095_b0120) 2023; 54
Tian (10.1016/j.compag.2025.110095_b0130) 2020; 193
Vinh (10.1016/j.compag.2025.110095_b0150) 2010; 11
Hussain (10.1016/j.compag.2025.110095_b0045) 2023; 207
Rodriguez (10.1016/j.compag.2025.110095_b0100) 2014; 344
References_xml – volume: 8
  year: 2022
  ident: b0125
  article-title: Peach flower density detection based on an improved CNN incorporating attention mechanism and multi-scale feature fusion
  publication-title: Horticulturae.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0070
  article-title: Deep learning
  publication-title: Nature.
– volume: 38
  start-page: 222
  year: 2022
  end-page: 229
  ident: b0105
  article-title: Application of deep learning using YOLOv5s to apple flower detection in natural scenes
  publication-title: Journal of Agricultural Engineering in Chinese.
– reference: Zhang, H., Wan, S., Yue, L., Wu, Z., Zhao, Y., 2015. A new fast object detection architecture combing manually-designed feature and CNN. pp. 572-577,
– volume: 226
  year: 2024
  ident: b0115
  article-title: Using unmanned aerial vehicle acquired RGB images and Density-Cluster-Count model for tree-level apple flower quantification
  publication-title: Computers and Electronics in Agriculture.
– volume: 1
  start-page: 4
  year: 2007
  end-page: 33
  ident: b0035
  article-title: Clustering aggregation
  publication-title: ACM Trans. Knowl. Discov. Data.
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: b0060
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture.
– volume: 54
  year: 2023
  ident: b0120
  article-title: Review on deep learning Technology for fruit target recognition
  publication-title: Transactions of the Chinese Society for Agricultural Machinery in Chinese.
– volume: 7
  start-page: 40038
  year: 2019
  end-page: 40051
  ident: b0040
  article-title: An Internal Validity Index Based on Density-Involved Distance
  publication-title: IEEE Access
– volume: 193
  start-page: 264
  year: 2020
  end-page: 278
  ident: b0130
  article-title: Instance segmentation of apple flowers using the improved mask R-CNN model
  publication-title: Biosystems Engineering
– volume: 6
  year: 2010
  ident: b0145
  article-title: Computational complexity between K-Means and K-Medoids clustering algorithms for normal and uniform distributions of data points
  publication-title: Journal of Computer Science.
– volume: 209
  year: 2023
  ident: b0160
  article-title: MTYOLOX: Multi-transformers-enabled YOLO for tree-level apple inflorescences detection and density mapping
  publication-title: Computers and Electronics in Agriculture.
– volume: 12
  start-page: 511
  year: 2019
  end-page: 525
  ident: b0050
  article-title: A comprehensive review of Data Mining techniques in smart agriculture
  publication-title: Engineering in Agriculture, Environment and Food.
– volume: 12
  start-page: 2014
  year: 2020
  ident: b0090
  article-title: Fast searching density peak clustering algorithm based on shared nearest neighbor and adaptive clustering center
  publication-title: Symmetry.
– volume: 221
  start-page: 164
  year: 2022
  end-page: 180
  ident: b0185
  article-title: Automatic flower cluster estimation in apple orchards using aerial and ground based point clouds
  publication-title: Biosystems Engineering.
– volume: 197
  start-page: 256
  year: 2023
  end-page: 273
  ident: b0190
  article-title: Feasibility assessment of tree-level flower intensity quantification from UAV RGB imagery: A triennial study in an apple orchard
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing.
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: b0150
  article-title: Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance
  publication-title: 2Journal of Machine Learning Research
– volume: 211
  year: 2023
  ident: b0010
  article-title: Apple inflorescence recognition of phenology stage in complex background based on improved YOLOv7
  publication-title: Computers and Electronics in Agriculture
– volume: 8
  start-page: 137
  year: 2016
  end-page: 145
  ident: b0135
  article-title: A novel approach for CBIR using color strings with multi-fusion feature method
  publication-title: Digital Image Processing.
– volume: 178
  year: 2020
  ident: b0155
  article-title: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments
  publication-title: Computers and Electronics in Agriculture.
– volume: 24
  start-page: 1273
  year: 2002
  end-page: 1280
  ident: b0140
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 220
  year: 2024
  ident: b0015
  article-title: A method for multi-target segmentation of bud-stage apple trees based on improved YOLOv8
  publication-title: Computers and Electronics in Agriculture
– volume: 21
  year: 2021
  ident: b0085
  article-title: Research on lightweight citrus flowering rate statistical model combined with anchor frame clustering optimization
  publication-title: Sensors.
– volume: 8
  start-page: 3
  year: 2007
  ident: b0030
  article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinformatics.
– volume: 207
  year: 2023
  ident: b0110
  article-title: Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments
  publication-title: Computers and Electronics in Agriculture.
– volume: 152
  year: 2024
  ident: b0055
  article-title: Three-way evidence theory-based density peak clustering with the principle of justifiable granularity
  publication-title: Applied Soft Computing
– volume: 164
  year: 2024
  ident: b0165
  article-title: Boosting cattle face recognition under uncontrolled scenes by embedding enhancement and optimization
  publication-title: Applied Soft Computing.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0020
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 207
  year: 2023
  ident: b0045
  article-title: Green fruit segmentation and orientation estimation for robotic green fruit thinning of apples
  publication-title: Computers and Electronics in Agriculture.
– volume: 56
  start-page: 8914
  year: 2023
  end-page: 8919
  ident: b0065
  article-title: Machine vision system for early-stage apple flowers and flower clusters detection for precision thinning and Pollination
  publication-title: IFAC-PapersOnLine.
– reference: .
– volume: 10
  year: 2021
  ident: b0175
  article-title: A real-time detection algorithm for kiwifruit defects based on YOLOv5
  publication-title: Electronics.
– volume: 98
  year: 2024
  ident: b0180
  article-title: Evaluation method for uniformity of steel slag concrete aggregate based on improved YOLOv8
  publication-title: Journal of Building Engineering.
– reference: Yan, D., Huang, L., Jordan, M., 2009. Fast approximate spectral clustering. Paper presented at the Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. Paris, France.
– volume: 41
  start-page: 191
  year: 2008
  end-page: 203
  ident: b0005
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recognition.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b0100
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science.
– volume: 48
  start-page: 4743
  year: 2018
  end-page: 4759
  ident: b0025
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Applied Intelligence
– volume: 211
  year: 2023
  ident: b0075
  article-title: Predicting positions and orientations of individual kiwifruit flowers and clusters in natural environments
  publication-title: Computers and Electronics in Agriculture.
– volume: 52
  start-page: 1006
  year: 2017
  end-page: 1016
  ident: b0095
  article-title: Heading of shoots and hand thinning of flowers and fruits on 'BRS Kampai' peach trees
  publication-title: Pesquisa Agropecuaria Brasileira.
– volume: 20
  start-page: 138
  year: 2019
  end-page: 156
  ident: b0080
  article-title: Identifying immature and mature pomelo fruits in trees by elliptical model fitting in the Cr-Cb color space
  publication-title: Precision Agriculture.
– volume: 21
  issue: 23
  year: 2021
  ident: 10.1016/j.compag.2025.110095_b0085
  article-title: Research on lightweight citrus flowering rate statistical model combined with anchor frame clustering optimization
  publication-title: Sensors.
  doi: 10.3390/s21237929
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.compag.2025.110095_b0070
  article-title: Deep learning
  publication-title: Nature.
  doi: 10.1038/nature14539
– ident: 10.1016/j.compag.2025.110095_b0170
  doi: 10.1145/1557019.1557118
– volume: 38
  start-page: 222
  issue: 09
  year: 2022
  ident: 10.1016/j.compag.2025.110095_b0105
  article-title: Application of deep learning using YOLOv5s to apple flower detection in natural scenes
  publication-title: Journal of Agricultural Engineering in Chinese.
– volume: 54
  issue: 01
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0120
  article-title: Review on deep learning Technology for fruit target recognition
  publication-title: Transactions of the Chinese Society for Agricultural Machinery in Chinese.
– volume: 41
  start-page: 191
  issue: 1
  year: 2008
  ident: 10.1016/j.compag.2025.110095_b0005
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recognition.
  doi: 10.1016/j.patcog.2007.04.010
– volume: 12
  start-page: 511
  issue: 4
  year: 2019
  ident: 10.1016/j.compag.2025.110095_b0050
  article-title: A comprehensive review of Data Mining techniques in smart agriculture
  publication-title: Engineering in Agriculture, Environment and Food.
  doi: 10.1016/j.eaef.2019.11.003
– volume: 211
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0075
  article-title: Predicting positions and orientations of individual kiwifruit flowers and clusters in natural environments
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2023.108039
– volume: 98
  year: 2024
  ident: 10.1016/j.compag.2025.110095_b0180
  article-title: Evaluation method for uniformity of steel slag concrete aggregate based on improved YOLOv8
  publication-title: Journal of Building Engineering.
  doi: 10.1016/j.jobe.2024.111046
– ident: 10.1016/j.compag.2025.110095_b0195
  doi: 10.1109/CISP.2015.7407944
– volume: 8
  issue: 10
  year: 2022
  ident: 10.1016/j.compag.2025.110095_b0125
  article-title: Peach flower density detection based on an improved CNN incorporating attention mechanism and multi-scale feature fusion
  publication-title: Horticulturae.
  doi: 10.3390/horticulturae8100904
– volume: 6
  issue: 3
  year: 2010
  ident: 10.1016/j.compag.2025.110095_b0145
  article-title: Computational complexity between K-Means and K-Medoids clustering algorithms for normal and uniform distributions of data points
  publication-title: Journal of Computer Science.
  doi: 10.3844/jcssp.2010.363.368
– volume: 12
  start-page: 2014
  issue: 12
  year: 2020
  ident: 10.1016/j.compag.2025.110095_b0090
  article-title: Fast searching density peak clustering algorithm based on shared nearest neighbor and adaptive clustering center
  publication-title: Symmetry.
  doi: 10.3390/sym12122014
– volume: 197
  start-page: 256
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0190
  article-title: Feasibility assessment of tree-level flower intensity quantification from UAV RGB imagery: A triennial study in an apple orchard
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing.
  doi: 10.1016/j.isprsjprs.2023.02.003
– volume: 226
  year: 2024
  ident: 10.1016/j.compag.2025.110095_b0115
  article-title: Using unmanned aerial vehicle acquired RGB images and Density-Cluster-Count model for tree-level apple flower quantification
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2024.109389
– volume: 164
  year: 2024
  ident: 10.1016/j.compag.2025.110095_b0165
  article-title: Boosting cattle face recognition under uncontrolled scenes by embedding enhancement and optimization
  publication-title: Applied Soft Computing.
  doi: 10.1016/j.asoc.2024.111951
– volume: 8
  start-page: 137
  year: 2016
  ident: 10.1016/j.compag.2025.110095_b0135
  article-title: A novel approach for CBIR using color strings with multi-fusion feature method
  publication-title: Digital Image Processing.
– volume: 207
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0110
  article-title: Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2023.107765
– volume: 220
  year: 2024
  ident: 10.1016/j.compag.2025.110095_b0015
  article-title: A method for multi-target segmentation of bud-stage apple trees based on improved YOLOv8
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2024.108876
– volume: 48
  start-page: 4743
  issue: 12
  year: 2018
  ident: 10.1016/j.compag.2025.110095_b0025
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1238-7
– volume: 20
  start-page: 138
  issue: 1
  year: 2019
  ident: 10.1016/j.compag.2025.110095_b0080
  article-title: Identifying immature and mature pomelo fruits in trees by elliptical model fitting in the Cr-Cb color space
  publication-title: Precision Agriculture.
  doi: 10.1007/s11119-018-9586-1
– volume: 52
  start-page: 1006
  issue: 11
  year: 2017
  ident: 10.1016/j.compag.2025.110095_b0095
  article-title: Heading of shoots and hand thinning of flowers and fruits on 'BRS Kampai' peach trees
  publication-title: Pesquisa Agropecuaria Brasileira.
  doi: 10.1590/s0100-204x2017001100006
– volume: 10
  issue: 14
  year: 2021
  ident: 10.1016/j.compag.2025.110095_b0175
  article-title: A real-time detection algorithm for kiwifruit defects based on YOLOv5
  publication-title: Electronics.
  doi: 10.3390/electronics10141711
– volume: 1
  start-page: 4
  issue: 1
  year: 2007
  ident: 10.1016/j.compag.2025.110095_b0035
  article-title: Clustering aggregation
  publication-title: ACM Trans. Knowl. Discov. Data.
  doi: 10.1145/1217299.1217303
– volume: 7
  start-page: 40038
  year: 2019
  ident: 10.1016/j.compag.2025.110095_b0040
  article-title: An Internal Validity Index Based on Density-Involved Distance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906949
– volume: 209
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0160
  article-title: MTYOLOX: Multi-transformers-enabled YOLO for tree-level apple inflorescences detection and density mapping
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2023.107803
– volume: 152
  year: 2024
  ident: 10.1016/j.compag.2025.110095_b0055
  article-title: Three-way evidence theory-based density peak clustering with the principle of justifiable granularity
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.111217
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.compag.2025.110095_b0100
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science.
  doi: 10.1126/science.1242072
– volume: 193
  start-page: 264
  year: 2020
  ident: 10.1016/j.compag.2025.110095_b0130
  article-title: Instance segmentation of apple flowers using the improved mask R-CNN model
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2020.03.008
– volume: 207
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0045
  article-title: Green fruit segmentation and orientation estimation for robotic green fruit thinning of apples
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2023.107734
– start-page: 226
  year: 1996
  ident: 10.1016/j.compag.2025.110095_b0020
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 56
  start-page: 8914
  issue: 2
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0065
  article-title: Machine vision system for early-stage apple flowers and flower clusters detection for precision thinning and Pollination
  publication-title: IFAC-PapersOnLine.
  doi: 10.1016/j.ifacol.2023.10.096
– volume: 211
  year: 2023
  ident: 10.1016/j.compag.2025.110095_b0010
  article-title: Apple inflorescence recognition of phenology stage in complex background based on improved YOLOv7
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.108048
– volume: 11
  start-page: 2837
  year: 2010
  ident: 10.1016/j.compag.2025.110095_b0150
  article-title: Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance
  publication-title: 2Journal of Machine Learning Research
– volume: 221
  start-page: 164
  year: 2022
  ident: 10.1016/j.compag.2025.110095_b0185
  article-title: Automatic flower cluster estimation in apple orchards using aerial and ground based point clouds
  publication-title: Biosystems Engineering.
  doi: 10.1016/j.biosystemseng.2022.05.004
– volume: 8
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.compag.2025.110095_b0030
  article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-8-3
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.compag.2025.110095_b0060
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2018.02.016
– volume: 24
  start-page: 1273
  issue: 9
  year: 2002
  ident: 10.1016/j.compag.2025.110095_b0140
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1033218
– volume: 178
  year: 2020
  ident: 10.1016/j.compag.2025.110095_b0155
  article-title: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2020.105742
SSID ssj0016987
Score 2.447211
Snippet •A method for apple flowers recognition based on YOLOv8n model was proposed.•An improved Single-Layer DPC algorithm was used to automatically determine...
Apple flower detection and positioning are crucial for the mechanical and chemical thinning of flowers, where typically only one or two of the strongest...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110095
SubjectTerms agriculture
algorithms
Apple Flower
apples
data collection
Deep Learning
Density Peak Clustering Algorithm
electronics
Flower Cluster Identification
flowers
Title Using improved density peak clustering algorithm for flower cluster identification and apple central and peripheral flower detection
URI https://dx.doi.org/10.1016/j.compag.2025.110095
https://www.proquest.com/docview/3200279247
Volume 232
WOSCitedRecordID wos001428118400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016987
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvGQkxKXKqnk6Plaoy0OlcOiicLIcx-5mKWnotqvtnR_Bz2X8apaXWA5cosqJ0yjzyfNl_M0MQs-Siocl-JEgLoUKkjLMglxxEVBOgSQlUZKZZjAfJmQ6zYuCvu_1vvlcmLMFaZr8_Jy2_9XUMAbG1qmz_2Du3U1hAH6D0eEIZofjpQxvRQC1CRYAm6y0Qh2Ydiv5p4FYbHRhBJOYuJgvV_X6-LMRGqqF7pbmzw_qyomILDxMQddWyw6dltOWF4AbmaIECz-9kmuj7GouUl7fN8IWg-7a7hghLp-vXPGPHcBeSrv8vIWn3HLnWE0RSRfa_rjZ1t1wUfuI93G93XT7A05pXOuC1c3F2EaUdkpCH-7M4Bs3sy2U_HoNHHDQ6vQFYIfBb72ADUicHBgZ__xA39ld33k9v9M_fccOjyYTNhsXs-ftl0D3I9P79q45yxW0F5GU5n20N3o9Lt7sdqgymttUfPeEPi3TaAd__eM_0Z6fCIBhNbOb6Ib7HMEjC6NbqCeb2-j6qLPKHfTVAAp7QGEHKKwBhTtA4R2gMAAKW0T48_hHQGFAAjaAwg5QZqQDlJ--A9RddHQ4nr14FbjeHYGI8nwdxHGqUqko-GES8SqVSUqGKtdZQ5XKhYjEUGUiAb4qlMxEOUyVirUML8x4Loc8vof6zbKR9xEOyzgB10MqLpJEcMrLMixTQqnklFQl30eBf7WstSVamNcunjBrCqZNwawp9hHx7585mmnpIwP8_GXmU28uBquw3lrjjVxuTlmstU6ERgl5cIlrHqJrHdofof56tZGP0VVxtq5PV08c0r4DHwu0Ag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+improved+density+peak+clustering+algorithm+for+flower+cluster+identification+and+apple+central+and+peripheral+flower+detection&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Geng%2C+Mingyang&rft.au=Shang%2C+Yuying&rft.au=Xiang%2C+Shiyu&rft.au=Wang%2C+Jiachen&rft.date=2025-05-01&rft.issn=0168-1699&rft.volume=232+p.110095-&rft_id=info:doi/10.1016%2Fj.compag.2025.110095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon