Dynamic Background Subtraction in Video Surveillance Using Color-Histogram and Fuzzy C-Means Algorithm with Cosine Similarity

The background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Online and Biomedical Engineering Ročník 18; číslo 9; s. 74 - 85
Hlavní autoři: Yasir, Maryam A., Yossra Hussain Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2022
ISSN:2626-8493, 2626-8493
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-histogram and Fuzzy C-means (FCM) to obtain the background model using cosine similarity (CS) to measure the closeness between the current pixel and the background model and eventually determine the background and foreground pixel according to a tuned threshold. The performance of this model is benchmarked on CDnet2014 dynamic scenes dataset using statistical metrics. The results show a better performance against the state-of the art background subtraction models.
ISSN:2626-8493
2626-8493
DOI:10.3991/ijoe.v18i09.30775