Convex reformulation for binary quadratic programming problems via average objective value maximization

Quadratic convex reformulation is an important method for improving the performance of a branch-and-bound based binary quadratic programming solver. In this paper, we study a new convex reformulation method. By this reformulation, the efficiency of a branch-and-bound algorithm can be improved signif...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 9; číslo 3; s. 523 - 535
Hlavní autori: Lu, Cheng, Guo, Xiaoling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2015
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Quadratic convex reformulation is an important method for improving the performance of a branch-and-bound based binary quadratic programming solver. In this paper, we study a new convex reformulation method. By this reformulation, the efficiency of a branch-and-bound algorithm can be improved significantly. We also compare this new reformulation method with other proposed methods, whose effectiveness has been proven. Numerical experimental results show that our reformulation method performs better than the compared methods for certain types of binary quadratic programming problems.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-014-0768-0