Multi-point evaluation in higher dimensions

In this paper, we propose efficient new algorithms for multi-dimensional multi-point evaluation and interpolation on certain subsets of so called tensor product grids. These point-sets naturally occur in the design of efficient multiplication algorithms for finite-dimensional -algebras of the form ,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable algebra in engineering, communication and computing Ročník 24; číslo 1; s. 37 - 52
Hlavní autoři: van der Hoeven, Joris, Schost, Éric
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.01.2013
Témata:
ISSN:0938-1279, 1432-0622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose efficient new algorithms for multi-dimensional multi-point evaluation and interpolation on certain subsets of so called tensor product grids. These point-sets naturally occur in the design of efficient multiplication algorithms for finite-dimensional -algebras of the form , where is generated by monomials of the form ; one particularly important example is the algebra of truncated power series . Similarly to what is known for multi-point evaluation and interpolation in the univariate case, our algorithms have quasi-linear time complexity. As a known consequence Schost (ISSAC’05, ACM, New York, NY, pp 293–300, 2005 ), we obtain fast multiplication algorithms for algebras of the above form.
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-012-0179-3