Discrete Hyperparameter Optimization Model Based on Skewed Distribution

As for the machine learning algorithm, one of the main factors restricting its further large-scale application is the value of hyperparameter. Therefore, researchers have done a lot of original numerical optimization algorithms to ensure the validity of hyperparameter selection. Based on previous st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical problems in engineering Ročník 2022; s. 1 - 10
Hlavní autor: Li, Yuqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 09.08.2022
John Wiley & Sons, Inc
Témata:
ISSN:1024-123X, 1563-5147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As for the machine learning algorithm, one of the main factors restricting its further large-scale application is the value of hyperparameter. Therefore, researchers have done a lot of original numerical optimization algorithms to ensure the validity of hyperparameter selection. Based on previous studies, this study innovatively puts forward a model generated using skewed distribution (gamma distribution) as hyperparameter fitting and combines the Bayesian estimation method and Gauss hypergeometric function to propose a mathematically optimal solution for discrete hyperparameter selection. The results show that under strict mathematical conditions, the value of discrete hyperparameters can be given a reasonable expected value. This heuristic parameter adjustment method based on prior conditions can improve the accuracy of some traditional models in experiments and then improve the application value of models. At the same time, through the empirical study of relevant datasets, the effectiveness of the parameter adjustment strategy proposed in this study is further proved.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/2835596