Feasibility study of subject‐specific, brain specific‐absorption‐rate maps retrieved from MRI data
Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study con...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 94; H. 3; S. 1136 - 1151 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
01.09.2025
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Introduction
Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject‐specific, image‐based SAR and 10‐g SAR maps directly from MRI data.
Methods
Complex B1+ maps were derived by combining a B1+ product (XFL) magnitude sequence with balanced steady‐state free precession phase. Anatomical information and tissue masking were obtained from a T1 magnetization‐prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady‐state free precession phase. Whole‐brain SAR maps were created from MRI data acquired at 3 T using a 32‐channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B1+ data. Numerical simulations compared image‐based SAR with simulation‐based SAR distributions.
Results
A multi‐slice image‐based brain SAR map was obtained in 12 min (9‐min acquisition, 3‐min SAR reconstruction). In vitro experiments validated B1+ distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image‐based SAR and 10‐g SAR maps showed a distribution similar to simulation‐based maps (r = 0.5) after correction.
Conclusions
This study shows the feasibility of inline, subject‐specific SAR and 10‐g SAR maps from standard brain clinical sequences. Image‐based SAR maps can be a practical alternative during MRI exams when simulations are not feasible. |
|---|---|
| AbstractList | Introduction
Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject‐specific, image‐based SAR and 10‐g SAR maps directly from MRI data.
Methods
Complex B1+ maps were derived by combining a B1+ product (XFL) magnitude sequence with balanced steady‐state free precession phase. Anatomical information and tissue masking were obtained from a T1 magnetization‐prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady‐state free precession phase. Whole‐brain SAR maps were created from MRI data acquired at 3 T using a 32‐channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B1+ data. Numerical simulations compared image‐based SAR with simulation‐based SAR distributions.
Results
A multi‐slice image‐based brain SAR map was obtained in 12 min (9‐min acquisition, 3‐min SAR reconstruction). In vitro experiments validated B1+ distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image‐based SAR and 10‐g SAR maps showed a distribution similar to simulation‐based maps (r = 0.5) after correction.
Conclusions
This study shows the feasibility of inline, subject‐specific SAR and 10‐g SAR maps from standard brain clinical sequences. Image‐based SAR maps can be a practical alternative during MRI exams when simulations are not feasible. Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject‐specific, image‐based SAR and 10‐g SAR maps directly from MRI data. Methods Complex B1+ maps were derived by combining a B1+ product (XFL) magnitude sequence with balanced steady‐state free precession phase. Anatomical information and tissue masking were obtained from a T1 magnetization‐prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady‐state free precession phase. Whole‐brain SAR maps were created from MRI data acquired at 3 T using a 32‐channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B1+ data. Numerical simulations compared image‐based SAR with simulation‐based SAR distributions. Results A multi‐slice image‐based brain SAR map was obtained in 12 min (9‐min acquisition, 3‐min SAR reconstruction). In vitro experiments validated B1+ distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image‐based SAR and 10‐g SAR maps showed a distribution similar to simulation‐based maps (r = 0.5) after correction. Conclusions This study shows the feasibility of inline, subject‐specific SAR and 10‐g SAR maps from standard brain clinical sequences. Image‐based SAR maps can be a practical alternative during MRI exams when simulations are not feasible. Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real-time patient-specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject-specific, image-based SAR and 10-g SAR maps directly from MRI data. Complex B maps were derived by combining a B product (XFL) magnitude sequence with balanced steady-state free precession phase. Anatomical information and tissue masking were obtained from a T magnetization-prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady-state free precession phase. Whole-brain SAR maps were created from MRI data acquired at 3 T using a 32-channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B data. Numerical simulations compared image-based SAR with simulation-based SAR distributions. A multi-slice image-based brain SAR map was obtained in 12 min (9-min acquisition, 3-min SAR reconstruction). In vitro experiments validated B distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image-based SAR and 10-g SAR maps showed a distribution similar to simulation-based maps (r = 0.5) after correction. This study shows the feasibility of inline, subject-specific SAR and 10-g SAR maps from standard brain clinical sequences. Image-based SAR maps can be a practical alternative during MRI exams when simulations are not feasible. |
| Author | Zanovello, Umberto Keenan, Kathryn E. Martinez, Jessica A. Ogier, Stephen E. Bottauscio, Oriano Zilberti, Luca Hu, Houchun Harry Arduino, Alessandro Moulin, Kevin |
| AuthorAffiliation | 5 Department of Cardiology of Boston Children's Hospital Harvard Medical School Boston Massachusetts USA 1 Physical Measurement Laboratory National Institute of Standards and Technology Boulder Colorado USA 2 Department of Physics University of Colorado Boulder Boulder Colorado USA 4 Department of Radiology, Section of Radiological Science University of Colorado Denver, Anschutz Medical Campus Aurora Colorado USA 3 Istituto Nazionale di Ricerca Metrologica Torino Italy |
| AuthorAffiliation_xml | – name: 3 Istituto Nazionale di Ricerca Metrologica Torino Italy – name: 4 Department of Radiology, Section of Radiological Science University of Colorado Denver, Anschutz Medical Campus Aurora Colorado USA – name: 2 Department of Physics University of Colorado Boulder Boulder Colorado USA – name: 1 Physical Measurement Laboratory National Institute of Standards and Technology Boulder Colorado USA – name: 5 Department of Cardiology of Boston Children's Hospital Harvard Medical School Boston Massachusetts USA |
| Author_xml | – sequence: 1 givenname: Jessica A. orcidid: 0000-0002-3274-566X surname: Martinez fullname: Martinez, Jessica A. email: jessica.a.martinezm@gmail.com organization: University of Colorado Boulder – sequence: 2 givenname: Umberto orcidid: 0000-0001-6415-9967 surname: Zanovello fullname: Zanovello, Umberto organization: Istituto Nazionale di Ricerca Metrologica – sequence: 3 givenname: Alessandro orcidid: 0000-0002-4829-5130 surname: Arduino fullname: Arduino, Alessandro organization: Istituto Nazionale di Ricerca Metrologica – sequence: 4 givenname: Houchun Harry orcidid: 0000-0002-0719-1159 surname: Hu fullname: Hu, Houchun Harry organization: University of Colorado Denver, Anschutz Medical Campus – sequence: 5 givenname: Kevin orcidid: 0000-0002-9188-6403 surname: Moulin fullname: Moulin, Kevin organization: Harvard Medical School – sequence: 6 givenname: Stephen E. orcidid: 0000-0003-1098-1693 surname: Ogier fullname: Ogier, Stephen E. organization: National Institute of Standards and Technology – sequence: 7 givenname: Oriano orcidid: 0000-0002-5437-4396 surname: Bottauscio fullname: Bottauscio, Oriano organization: Istituto Nazionale di Ricerca Metrologica – sequence: 8 givenname: Luca orcidid: 0000-0002-2382-4710 surname: Zilberti fullname: Zilberti, Luca organization: Istituto Nazionale di Ricerca Metrologica – sequence: 9 givenname: Kathryn E. orcidid: 0000-0001-9070-5255 surname: Keenan fullname: Keenan, Kathryn E. organization: National Institute of Standards and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40411380$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kdtKHEEQhpuguOvhIi8gDV4JGe3TnK5ERKPgEljiddOHmmwvO9Njd4-ydz6Cz5gnyeiuklzkqvipr_4q6t9HO53vAKGvlJxRQth5G9ozTnJRfkFTmjOWsbwWO2hKSkEyTmsxQfsxLgkhdV2KPTQRRFDKKzJFixtQ0Wm3cmmNYxrsGvsGx0EvwaTfL6-xB-MaZ75hHZTr8IceW0pHH_rkfDeKoBLgVvURB0jBwRNY3ATf4tn8DluV1CHabdQqwtG2HqCHm-ufV7fZ_Y_vd1eX95lhVVVmed7QhlVUgxaigLqgTWFAlYVmpWaFzZWyQgvLOVilTSUsoZwKSw3XACrnB-hi49sPugVroEtBrWQfXKvCWnrl5L-dzi3kL_8kKWOElbQcHU62DsE_DhCTXPohdOPRkjNWk5wVBR2p47_3fC74eO0InG4AE3yMAZpPhBL5FpscY5PvsY3s-YZ9ditY_x-Us_lsM_EHXd2eOQ |
| Cites_doi | 10.1007/978-3-319-46630-9_5 10.1002/jmri.20977 10.1002/mrm.27948 10.1007/s11517‐016‐1497‐6 10.1088/1361‐6560/ad5070 10.1007/s00330‐024‐11055‐1 10.1097/HP.0000000000001210 10.1088/0031‐9155/55/17/5249 10.1002/mrm.23322 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2004.07.051 10.1063/1.4903774 10.1016/j.neuroimage.2017.03.035 10.1002/mrm.21149 10.1007/s40134‐015‐0128‐6 10.1016/S1120‐1797(05)80020‐1 10.3390/app11073237 10.1109/TMI.2013.2251653 10.1080/02656736.2018.1424945 10.3389/fnins.2021.735290 10.1038/s41598‐024‐67014‐9 10.3390/diagnostics11020176 10.1002/mrm.24215 10.1109/JERM.2023.3236153 10.15265/IY‐2016‐016 10.1109/TBME.2016.2521166 10.1002/mrm.22948 10.1002/mrm.29163 10.1002/mrm.22357 10.1016/0730‐725X(88)90441‐9 10.1002/mrm.30009 10.1002/mrm.21120 10.1002/nbm.3729 10.1109/TMTT.1971.1127617 10.1002/mrm.24329 10.1002/mrm.29797 10.1016/j.neuroimage.2008.10.055 10.1038/s41598‐019‐45382‐x 10.1002/jmri.20041 10.1002/mrm.21475 10.1109/ACCESS.2025.3546036 10.21236/ADA303903 10.1259/bjr.73.868.10844863 10.1109/TMI.2009.2015757 10.1016/j.rxeng.2023.01.009 10.1006/jmra.1993.1133 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. – notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 5PM |
| DOI | 10.1002/mrm.30547 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | MARTINEZ et al |
| EISSN | 1522-2594 |
| EndPage | 1151 |
| ExternalDocumentID | PMC12202717 40411380 10_1002_mrm_30547 MRM30547 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: 18HLT05 QUIERO Project – fundername: he EMPIR Programme, co‐financed by the Participating States and from the European Union's Horizon 2020 Research and Innovation Programme – fundername: NIST‐PREP (Professional Research Experience Program) funderid: 70NANB18H006 – fundername: U.S. Department of Commerce, National Institute of Standards and Technology – fundername: he EMPIR Programme, co-financed by the Participating States and from the European Union's Horizon 2020 Research and Innovation Programme – fundername: NIST-PREP (Professional Research Experience Program) grantid: 70NANB18H006 – fundername: NIST‐PREP (Professional Research Experience Program) grantid: 70NANB18H006 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 5PM |
| ID | FETCH-LOGICAL-c2887-55f1f281beb446e961f6cea76b27b26d5aad4b4d33edabc84d01314d1c3beea53 |
| IEDL.DBID | 24P |
| ISSN | 0740-3194 |
| IngestDate | Tue Nov 04 02:05:12 EST 2025 Sat Nov 29 14:55:32 EST 2025 Mon Jun 30 02:54:31 EDT 2025 Sat Nov 29 07:43:53 EST 2025 Thu Jul 03 09:30:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | EPT SAR RF heating |
| Language | English |
| License | Attribution 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2887-55f1f281beb446e961f6cea76b27b26d5aad4b4d33edabc84d01314d1c3beea53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Correction added after online publication 1 June 2025. The title was corrected to Feasibility study of subject‐specific, brain specific‐absorption‐rate maps retrieved from MRI data. Previously the title referred to 'specific‐absorption‐ratio |
| ORCID | 0000-0003-1098-1693 0000-0001-9070-5255 0000-0002-9188-6403 0000-0002-0719-1159 0000-0002-5437-4396 0000-0001-6415-9967 0000-0002-4829-5130 0000-0002-2382-4710 0000-0002-3274-566X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30547 |
| PMID | 40411380 |
| PQID | 3229052661 |
| PQPubID | 1016391 |
| PageCount | 16 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12202717 proquest_journals_3229052661 pubmed_primary_40411380 crossref_primary_10_1002_mrm_30547 wiley_primary_10_1002_mrm_30547_MRM30547 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2009; 45 2010; 55 2019; 9 2013; 69 2015; 3 2020; 83 2023; 7 2018; 168 2004; 23 2000; 73 2005; 21 2022; 87 2025; 13 2024; 35 1993; 103 2024; 14 2007; 57 2010; 63 2009; 28 2023; 65 2014; 105 2021; 15 2017; 30 2021; 11 2004; 19 2013; 32 2022 1971; 19 1988; 6 2017; 55 2024; 91 2011; 66 2016; 63 2020; 118 2016 2024; 69 2018; 34 2012; 68 2023; 90 2008; 60 2016; 25 2007; 26 2012; 62 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 69 start-page: 1157 year: 2013 end-page: 1168 article-title: SAR simulations for high‐field MRI: how much detail, effort, and accuracy is needed? publication-title: Magn Reson Med. – volume: 25 start-page: 152 year: 2016 end-page: 158 article-title: A review of numerical simulation and analytical modeling for medical devices safety in MRI publication-title: Yearb Med Inform. – volume: 15 year: 2021 article-title: Recommendations of choice of head coil and Prescan normalize filter depend on region of interest and task publication-title: Front Neurosci. – volume: 32 start-page: 1058 year: 2013 end-page: 1067 article-title: From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi‐channel transceiver coil at 7T publication-title: IEEE Trans Med Imaging. – volume: 105 year: 2014 article-title: Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: a phantom validation at 7 T publication-title: Appl Phys Lett. – volume: 26 start-page: 437 year: 2007 end-page: 441 article-title: SAR and temperature: simulations and comparison to regulatory limits for MRI publication-title: J Magn Reson Imaging. – volume: 73 start-page: 376 year: 2000 end-page: 383 article-title: Quality assurance for MRI: practical experience publication-title: Br J Radiol. – volume: 91 start-page: 2374 year: 2024 end-page: 2390 article-title: Phantom evaluation of electrical conductivity mapping by MRI: comparison to vector network analyzer measurements and spatial resolution assessment publication-title: Magn Reson Med – volume: 55 start-page: 5249 year: 2010 article-title: Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie–talkie devices publication-title: Phys Med Biol. – volume: 60 start-page: 312 year: 2008 end-page: 319 article-title: Spatial distribution of RF‐induced E‐fields and implant heating in MRI publication-title: Magn Reson Med. – volume: 66 start-page: 1767 year: 2011 end-page: 1776 article-title: Toward individualized SAR models and in vivo validation publication-title: Magn Reson Med. – volume: 45 start-page: S173 year: 2009 end-page: S186 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: Neuroimage. – volume: 118 start-page: 483 year: 2020 article-title: The International Commission on Non‐Ionizing Radiation Protection (ICNRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz) publication-title: Health Phys – volume: 11 start-page: 3237 year: 2021 article-title: EPTlib: an open‐source extensible collection of electric properties tomography techniques publication-title: Appl Sci. – volume: 55 start-page: 225 year: 2017 end-page: 233 article-title: B1‐based SAR reconstruction using contrast source inversion–electric properties tomography (CSI‐EPT) publication-title: Med Biol Eng Comput – volume: 30 year: 2017 article-title: Electric properties tomography: biochemical, physical and technical background, evaluation and clinical applications publication-title: NMR Biomed. – volume: 14 start-page: 16109 year: 2024 article-title: Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI publication-title: Sci Rep. – volume: 168 start-page: 33 year: 2018 end-page: 58 article-title: SAR simulations & safety publication-title: Neuroimage. – volume: 103 start-page: 82 year: 1993 end-page: 85 article-title: Mapping of the radiofrequency field publication-title: J Magn Reson A. – volume: 65 start-page: 447 year: 2023 end-page: 457 article-title: Patient safety in magnetic resonance imaging publication-title: Radiol Engl Ed. – volume: 90 start-page: 2524 year: 2023 end-page: 2538 article-title: Deep learning‐based local SAR prediction using B1 maps and structural MRI of the head for parallel transmission at 7 T publication-title: Magn Reson Med. – volume: 83 start-page: 695 year: 2020 end-page: 711 article-title: A deep learning method for image‐based subject‐specific local SAR assessment publication-title: Magn Reson Med. – volume: 68 start-page: 1117 year: 2012 end-page: 1126 article-title: Patient‐individual local SAR determination: in vivo measurements and numerical validation publication-title: Magn Reson Med. – volume: 57 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med. – volume: 68 start-page: 1911 year: 2012 end-page: 1918 article-title: B1‐based specific energy absorption rate determination for nonquadrature radiofrequency excitation publication-title: Magn Reson Med. – volume: 13 start-page: 42029 year: 2025 end-page: 42044 article-title: Magnetic resonance‐based electric properties tomography via Green's integral identity publication-title: IEEE Access. – volume: 19 start-page: 650 year: 2004 end-page: 656 article-title: Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz publication-title: J Magn Reson Imaging. – volume: 28 start-page: 1365 year: 2009 end-page: 1374 article-title: Determination of electric conductivity and local SAR via B1 mapping publication-title: IEEE Trans Med Imaging. – volume: 7 start-page: 168 year: 2023 end-page: 175 article-title: Evaluation and correction of B1+‐based brain subject‐specific SAR maps using electrical properties tomography publication-title: IEEE J Electromagn RF Microw Med Biol. – volume: 63 start-page: 2250 year: 2016 end-page: 2261 article-title: Fast electromagnetic analysis of MRI transmit RF coils based on accelerated integral equation methods publication-title: IEEE Trans Biomed Eng. – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 11 start-page: 176 year: 2021 article-title: Electrical properties tomography: a methodological review publication-title: Diagnostics. – volume: 35 start-page: 1785 year: 2024 end-page: 1793 article-title: ESR essentials: advanced MR safety in vulnerable patients—practice recommendations by the European Society for Magnetic Resonance in Medicine and Biology publication-title: Eur Radiol. – volume: 62 start-page: 782 year: 2012 end-page: 790 article-title: FSL publication-title: Neuroimage. – year: 2022 – volume: 9 start-page: 8895 year: 2019 article-title: Opening a new window on MR‐based electrical properties tomography with deep learning publication-title: Sci Rep. – volume: 6 start-page: 125 year: 1988 end-page: 130 article-title: SAR reduced pulse sequences publication-title: Magn Reson Imaging. – volume: 63 start-page: 1315 year: 2010 end-page: 1322 article-title: B1 mapping by Bloch‐Siegert shift publication-title: Magn Reson Med. – volume: 69 year: 2024 article-title: Polynomial chaos expansion of SAR and temperature increase variability in 3 T MRI due to stochastic input data publication-title: Phys Med Biol. – volume: 19 start-page: 733 year: 1971 end-page: 736 article-title: Equations for calculating the dielectric constant of saline water (correspondence) publication-title: IEEE Trans Microw Theory Tech. – volume: 3 start-page: 45 year: 2015 article-title: Heating and safety concerns of the radio‐frequency field in MRI publication-title: Curr Radiol Rep. – volume: 34 start-page: 1248 year: 2018 end-page: 1254 article-title: SAR thresholds for electromagnetic exposure using functional thermal dose limits publication-title: Int J Hyperthermia. – volume: 57 start-page: 577 year: 2007 end-page: 586 article-title: Simultaneous B homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil publication-title: Magn Reson Med. – start-page: 45 year: 2016 end-page: 54 – volume: 87 start-page: 2997 year: 2022 end-page: 3010 article-title: Individualized and accurate SAR characterization method based on equivalent circuit model for MRI system publication-title: Magn Reson Med. – volume: 21 start-page: 61 year: 2005 end-page: 64 article-title: Theoretical and experimental investigation of the relationship among SAR, tissues and radio frequencies in MRI publication-title: Phys Med. – ident: e_1_2_9_13_1 doi: 10.1007/978-3-319-46630-9_5 – ident: e_1_2_9_54_1 doi: 10.1002/jmri.20977 – ident: e_1_2_9_18_1 doi: 10.1002/mrm.27948 – ident: e_1_2_9_3_1 – ident: e_1_2_9_25_1 – ident: e_1_2_9_48_1 doi: 10.1007/s11517‐016‐1497‐6 – ident: e_1_2_9_16_1 doi: 10.1088/1361‐6560/ad5070 – ident: e_1_2_9_20_1 doi: 10.1007/s00330‐024‐11055‐1 – ident: e_1_2_9_43_1 – ident: e_1_2_9_40_1 doi: 10.1097/HP.0000000000001210 – ident: e_1_2_9_56_1 doi: 10.1088/0031‐9155/55/17/5249 – ident: e_1_2_9_30_1 doi: 10.1002/mrm.23322 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuroimage.2011.09.015 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_9_33_1 doi: 10.1063/1.4903774 – ident: e_1_2_9_9_1 doi: 10.1016/j.neuroimage.2017.03.035 – ident: e_1_2_9_6_1 doi: 10.1002/mrm.21149 – ident: e_1_2_9_5_1 doi: 10.1007/s40134‐015‐0128‐6 – ident: e_1_2_9_10_1 doi: 10.1016/S1120‐1797(05)80020‐1 – ident: e_1_2_9_35_1 doi: 10.3390/app11073237 – ident: e_1_2_9_32_1 doi: 10.1109/TMI.2013.2251653 – ident: e_1_2_9_39_1 doi: 10.1080/02656736.2018.1424945 – ident: e_1_2_9_44_1 – ident: e_1_2_9_46_1 – ident: e_1_2_9_52_1 – ident: e_1_2_9_26_1 doi: 10.3389/fnins.2021.735290 – ident: e_1_2_9_50_1 doi: 10.1038/s41598‐024‐67014‐9 – ident: e_1_2_9_29_1 doi: 10.3390/diagnostics11020176 – ident: e_1_2_9_31_1 doi: 10.1002/mrm.24215 – ident: e_1_2_9_34_1 doi: 10.1109/JERM.2023.3236153 – ident: e_1_2_9_7_1 doi: 10.15265/IY‐2016‐016 – ident: e_1_2_9_17_1 doi: 10.1109/TBME.2016.2521166 – ident: e_1_2_9_11_1 doi: 10.1002/mrm.22948 – ident: e_1_2_9_47_1 doi: 10.1002/mrm.29163 – ident: e_1_2_9_23_1 doi: 10.1002/mrm.22357 – ident: e_1_2_9_4_1 doi: 10.1016/0730‐725X(88)90441‐9 – ident: e_1_2_9_49_1 doi: 10.1002/mrm.30009 – ident: e_1_2_9_24_1 doi: 10.1002/mrm.21120 – ident: e_1_2_9_27_1 doi: 10.1002/nbm.3729 – ident: e_1_2_9_42_1 doi: 10.1109/TMTT.1971.1127617 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.24329 – ident: e_1_2_9_28_1 – ident: e_1_2_9_55_1 doi: 10.1002/mrm.29797 – ident: e_1_2_9_38_1 doi: 10.1016/j.neuroimage.2008.10.055 – ident: e_1_2_9_45_1 doi: 10.1038/s41598‐019‐45382‐x – ident: e_1_2_9_2_1 doi: 10.1002/jmri.20041 – ident: e_1_2_9_8_1 doi: 10.1002/mrm.21475 – ident: e_1_2_9_51_1 doi: 10.1109/ACCESS.2025.3546036 – ident: e_1_2_9_14_1 doi: 10.21236/ADA303903 – ident: e_1_2_9_41_1 doi: 10.1259/bjr.73.868.10844863 – ident: e_1_2_9_21_1 doi: 10.1109/TMI.2009.2015757 – ident: e_1_2_9_15_1 – ident: e_1_2_9_19_1 doi: 10.1016/j.rxeng.2023.01.009 – ident: e_1_2_9_22_1 doi: 10.1006/jmra.1993.1133 – ident: e_1_2_9_53_1 |
| SSID | ssj0009974 |
| Score | 2.4848309 |
| Snippet | Introduction
Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually... Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated... Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1136 |
| SubjectTerms | Absorption Adult Algorithms Brain Brain - diagnostic imaging Brain mapping Brain Mapping - methods Brain slice preparation Computer Simulation Data acquisition Electrical conductivity Electrical resistivity EPT Feasibility Studies Healthy Volunteers Humans Image processing Image Processing, Computer-Assisted - methods Image reconstruction Imaging Methodology In vivo methods and tests Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Neuroimaging Phantoms, Imaging Precession Radio frequency Radio Waves RF heating SAR Simulation |
| Title | Feasibility study of subject‐specific, brain specific‐absorption‐rate maps retrieved from MRI data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30547 https://www.ncbi.nlm.nih.gov/pubmed/40411380 https://www.proquest.com/docview/3229052661 https://pubmed.ncbi.nlm.nih.gov/PMC12202717 |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHFErVC1CgdIEiC_XQA4H1Kw9xQqUrkNgVWhWVW-RXBIfdRQkgcetP6G_kl-BxkoUVqoTUWyw7ieUZjyfO-BuAb35Nk9JwG6WZNZFQhkZZwpPIdq1RaVygooRkE8lgkF5eZudzcNiehan5ENMNN5wZwV7jBFe6OniGho7K0b5XVpG8gwVKeYp5G5g4fybuZjWCORFoaDLRYoW67GB66-xi9MrDfB0o-dKBDStQb_m_-r4CS43jSY5qTfkEc268Ch_6za_1VVgMsaCmWoMr7xY2QbMPJOBnyaQg1Z3GLZvHP3_xcCYGGO0RjfklSFv2Vf79kzIYIV9ACAUZqZuKlCFt172zBE-zkP7wlGBk6jpc9H7--nESNQkZIsPQGElZ0IJ5R9dp_xXpspgWsXEqiTVLNIutVMoKLSznziptUmGR5iMsNVw7pyT_DPPjydh9AZKaxKuCFloz5Zspzb1Z7jppmFRGUNOB3VYy-U3N3chrwjLL_ejlYfQ6sN3KLG-mXpVzJNhL9Ds6sFGLb_oE0RVBVTqQzgh22gBh27M14-urAN2mDLeJqH_n9yDZf_cq7w_74WLz7U234CPDxMIheG0b5m_LO_cV3pv72-uq3AmKvQMLx8PexZkv_T4dPAHOjgMx |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6OtCWyiwQFur6qEHAvErD4kLQkWsSlYVoiq3yK8IDruLEkDqrT-hv5FfUo-TLKxQpUq9xfIksTzj8ZfJ-BuAT35Pk9JwG2W5NZFQhkZ5ytPIxtaoLKnQUEKxiXQ0ys7P828LsN-fhWn5IWYBN1wZwV_jAseA9N49a-i4Hu96axXpE1gSHmhg4YYfw9E95W7ecjCnAj1NLnpeoZjtzW6d340eQczHmZIPEWzYgo5e_d_gX8NyBz3JQWsrb2DBTVbgedH9XF-BZyEb1DSrcOGBYZc2-5MEAloyrUhzozFoc_frNx7PxBSjHaKxwgTp275L6WZaBzfkG0hDQcbqqiF1KNx16yzB8yykOB0SzE19C9-PvpwdHkddSYbIMHRHUla0Yh7qOu2_I12e0CoxTqWJZqlmiZVKWaGF5dxZpU0mLPL5CEsN184pyddgcTKduA0gmUm9MWihNVNeTGnuHXPspGFSGUHNAD72qimvWuaNsuVYZqWfvTLM3gC2e6WV3eJrSo4c9hKRxwDWW_3NniBiQSnP4gFkc5qdCSDd9nzP5PIi0G5ThoEi6t_5Oaj276Mqi9MiXGz-u-gHeHF8VpyUJ8PR1y14ybDMcEhl24bF6_rGvYOn5vb6sqnfByv_A4iEBNo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHdGkRl9JSaLelxap66KGB-JWH1EsFrIpgV2hVJG6RXxEc9qEEkLj1J_Q39pfU4yRLV6gSUm-x7CSWZzyeOONvAD75NU1Kw22U5dZEQhka5SlPIxtbo7KkREUJySbS0Si7uMjPVuBrdxam4UMsNtxwZgR7jRPczW25f08NnVSTPa-tIn0CqwKTyPRg9XA8OD-9h-7mDYU5FWhrctGRhWK2v7h5eT164GQ-jJX824cNi9Bg4_-6_wKet84n-dZoy0tYcdNNWBu2v9c34VmIBzX1K7j0rmEbOHtHAoKWzEpS32jctvn98xce0MQgoy9EY44J0pV9ldL1rAqGyBcQREEmal6TKqTuunWW4IkWMhwfE4xO3YLzwdGPg-9Rm5QhMgwNkpQlLZl3dp32X5IuT2iZGKfSRLNUs8RKpazQwnLurNImExaJPsJSw7VzSvJt6E1nU_cGSGZSrw5aaM2Ub6Y096Y5dtIwqYygpg8fO9EU84a9UTSUZVb40SvC6PVhpxNa0U6_uuBIsZfoe_ThdSO_xRNELCjlWdyHbEmyiwYI3F6umV5dBvA2ZbhVRP07PwfR_rtXxXA8DBdvH990F9bODgfF6fHo5B2sM8wzHGLZdqB3Xd249_DU3F5f1dWHVs3_ACgnBYM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+study+of+subject%E2%80%90specific%2C+brain+specific%E2%80%90absorption%E2%80%90rate+maps+retrieved+from+MRI+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Martinez%2C+Jessica+A.&rft.au=Zanovello%2C+Umberto&rft.au=Arduino%2C+Alessandro&rft.au=Hu%2C+Houchun+Harry&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=1136&rft.epage=1151&rft_id=info:doi/10.1002%2Fmrm.30547&rft.externalDBID=10.1002%252Fmrm.30547&rft.externalDocID=MRM30547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |