Feasibility study of subject‐specific, brain specific‐absorption‐rate maps retrieved from MRI data

Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 94; H. 3; S. 1136 - 1151
Hauptverfasser: Martinez, Jessica A., Zanovello, Umberto, Arduino, Alessandro, Hu, Houchun Harry, Moulin, Kevin, Ogier, Stephen E., Bottauscio, Oriano, Zilberti, Luca, Keenan, Kathryn E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.09.2025
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject‐specific, image‐based SAR and 10‐g SAR maps directly from MRI data. Methods Complex B1+ maps were derived by combining a B1+ product (XFL) magnitude sequence with balanced steady‐state free precession phase. Anatomical information and tissue masking were obtained from a T1 magnetization‐prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady‐state free precession phase. Whole‐brain SAR maps were created from MRI data acquired at 3 T using a 32‐channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B1+ data. Numerical simulations compared image‐based SAR with simulation‐based SAR distributions. Results A multi‐slice image‐based brain SAR map was obtained in 12 min (9‐min acquisition, 3‐min SAR reconstruction). In vitro experiments validated B1+ distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image‐based SAR and 10‐g SAR maps showed a distribution similar to simulation‐based maps (r = 0.5) after correction. Conclusions This study shows the feasibility of inline, subject‐specific SAR and 10‐g SAR maps from standard brain clinical sequences. Image‐based SAR maps can be a practical alternative during MRI exams when simulations are not feasible.
AbstractList Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject‐specific, image‐based SAR and 10‐g SAR maps directly from MRI data. Methods Complex B1+ maps were derived by combining a B1+ product (XFL) magnitude sequence with balanced steady‐state free precession phase. Anatomical information and tissue masking were obtained from a T1 magnetization‐prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady‐state free precession phase. Whole‐brain SAR maps were created from MRI data acquired at 3 T using a 32‐channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B1+ data. Numerical simulations compared image‐based SAR with simulation‐based SAR distributions. Results A multi‐slice image‐based brain SAR map was obtained in 12 min (9‐min acquisition, 3‐min SAR reconstruction). In vitro experiments validated B1+ distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image‐based SAR and 10‐g SAR maps showed a distribution similar to simulation‐based maps (r = 0.5) after correction. Conclusions This study shows the feasibility of inline, subject‐specific SAR and 10‐g SAR maps from standard brain clinical sequences. Image‐based SAR maps can be a practical alternative during MRI exams when simulations are not feasible.
Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real‐time patient‐specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject‐specific, image‐based SAR and 10‐g SAR maps directly from MRI data. Methods Complex B1+ maps were derived by combining a B1+ product (XFL) magnitude sequence with balanced steady‐state free precession phase. Anatomical information and tissue masking were obtained from a T1 magnetization‐prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady‐state free precession phase. Whole‐brain SAR maps were created from MRI data acquired at 3 T using a 32‐channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B1+ data. Numerical simulations compared image‐based SAR with simulation‐based SAR distributions. Results A multi‐slice image‐based brain SAR map was obtained in 12 min (9‐min acquisition, 3‐min SAR reconstruction). In vitro experiments validated B1+ distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image‐based SAR and 10‐g SAR maps showed a distribution similar to simulation‐based maps (r = 0.5) after correction. Conclusions This study shows the feasibility of inline, subject‐specific SAR and 10‐g SAR maps from standard brain clinical sequences. Image‐based SAR maps can be a practical alternative during MRI exams when simulations are not feasible.
Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real-time patient-specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject-specific, image-based SAR and 10-g SAR maps directly from MRI data. Complex B maps were derived by combining a B product (XFL) magnitude sequence with balanced steady-state free precession phase. Anatomical information and tissue masking were obtained from a T magnetization-prepared rapid gradient echo sequence. Electrical conductivity maps were generated from balanced steady-state free precession phase. Whole-brain SAR maps were created from MRI data acquired at 3 T using a 32-channel head coil on 2 healthy volunteers. A correction factor was applied to account for underestimation due to reliance on measurable B data. Numerical simulations compared image-based SAR with simulation-based SAR distributions. A multi-slice image-based brain SAR map was obtained in 12 min (9-min acquisition, 3-min SAR reconstruction). In vitro experiments validated B distribution and electrical conductivity values. Calculated electrical conductivities for in vitro and in vivo experiments were within reference ranges. Image-based SAR and 10-g SAR maps showed a distribution similar to simulation-based maps (r = 0.5) after correction. This study shows the feasibility of inline, subject-specific SAR and 10-g SAR maps from standard brain clinical sequences. Image-based SAR maps can be a practical alternative during MRI exams when simulations are not feasible.
Author Zanovello, Umberto
Keenan, Kathryn E.
Martinez, Jessica A.
Ogier, Stephen E.
Bottauscio, Oriano
Zilberti, Luca
Hu, Houchun Harry
Arduino, Alessandro
Moulin, Kevin
AuthorAffiliation 5 Department of Cardiology of Boston Children's Hospital Harvard Medical School Boston Massachusetts USA
1 Physical Measurement Laboratory National Institute of Standards and Technology Boulder Colorado USA
2 Department of Physics University of Colorado Boulder Boulder Colorado USA
4 Department of Radiology, Section of Radiological Science University of Colorado Denver, Anschutz Medical Campus Aurora Colorado USA
3 Istituto Nazionale di Ricerca Metrologica Torino Italy
AuthorAffiliation_xml – name: 3 Istituto Nazionale di Ricerca Metrologica Torino Italy
– name: 4 Department of Radiology, Section of Radiological Science University of Colorado Denver, Anschutz Medical Campus Aurora Colorado USA
– name: 2 Department of Physics University of Colorado Boulder Boulder Colorado USA
– name: 1 Physical Measurement Laboratory National Institute of Standards and Technology Boulder Colorado USA
– name: 5 Department of Cardiology of Boston Children's Hospital Harvard Medical School Boston Massachusetts USA
Author_xml – sequence: 1
  givenname: Jessica A.
  orcidid: 0000-0002-3274-566X
  surname: Martinez
  fullname: Martinez, Jessica A.
  email: jessica.a.martinezm@gmail.com
  organization: University of Colorado Boulder
– sequence: 2
  givenname: Umberto
  orcidid: 0000-0001-6415-9967
  surname: Zanovello
  fullname: Zanovello, Umberto
  organization: Istituto Nazionale di Ricerca Metrologica
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0002-4829-5130
  surname: Arduino
  fullname: Arduino, Alessandro
  organization: Istituto Nazionale di Ricerca Metrologica
– sequence: 4
  givenname: Houchun Harry
  orcidid: 0000-0002-0719-1159
  surname: Hu
  fullname: Hu, Houchun Harry
  organization: University of Colorado Denver, Anschutz Medical Campus
– sequence: 5
  givenname: Kevin
  orcidid: 0000-0002-9188-6403
  surname: Moulin
  fullname: Moulin, Kevin
  organization: Harvard Medical School
– sequence: 6
  givenname: Stephen E.
  orcidid: 0000-0003-1098-1693
  surname: Ogier
  fullname: Ogier, Stephen E.
  organization: National Institute of Standards and Technology
– sequence: 7
  givenname: Oriano
  orcidid: 0000-0002-5437-4396
  surname: Bottauscio
  fullname: Bottauscio, Oriano
  organization: Istituto Nazionale di Ricerca Metrologica
– sequence: 8
  givenname: Luca
  orcidid: 0000-0002-2382-4710
  surname: Zilberti
  fullname: Zilberti, Luca
  organization: Istituto Nazionale di Ricerca Metrologica
– sequence: 9
  givenname: Kathryn E.
  orcidid: 0000-0001-9070-5255
  surname: Keenan
  fullname: Keenan, Kathryn E.
  organization: National Institute of Standards and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40411380$$D View this record in MEDLINE/PubMed
BookMark eNp1kdtKHEEQhpuguOvhIi8gDV4JGe3TnK5ERKPgEljiddOHmmwvO9Njd4-ydz6Cz5gnyeiuklzkqvipr_4q6t9HO53vAKGvlJxRQth5G9ozTnJRfkFTmjOWsbwWO2hKSkEyTmsxQfsxLgkhdV2KPTQRRFDKKzJFixtQ0Wm3cmmNYxrsGvsGx0EvwaTfL6-xB-MaZ75hHZTr8IceW0pHH_rkfDeKoBLgVvURB0jBwRNY3ATf4tn8DluV1CHabdQqwtG2HqCHm-ufV7fZ_Y_vd1eX95lhVVVmed7QhlVUgxaigLqgTWFAlYVmpWaFzZWyQgvLOVilTSUsoZwKSw3XACrnB-hi49sPugVroEtBrWQfXKvCWnrl5L-dzi3kL_8kKWOElbQcHU62DsE_DhCTXPohdOPRkjNWk5wVBR2p47_3fC74eO0InG4AE3yMAZpPhBL5FpscY5PvsY3s-YZ9ditY_x-Us_lsM_EHXd2eOQ
Cites_doi 10.1007/978-3-319-46630-9_5
10.1002/jmri.20977
10.1002/mrm.27948
10.1007/s11517‐016‐1497‐6
10.1088/1361‐6560/ad5070
10.1007/s00330‐024‐11055‐1
10.1097/HP.0000000000001210
10.1088/0031‐9155/55/17/5249
10.1002/mrm.23322
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2004.07.051
10.1063/1.4903774
10.1016/j.neuroimage.2017.03.035
10.1002/mrm.21149
10.1007/s40134‐015‐0128‐6
10.1016/S1120‐1797(05)80020‐1
10.3390/app11073237
10.1109/TMI.2013.2251653
10.1080/02656736.2018.1424945
10.3389/fnins.2021.735290
10.1038/s41598‐024‐67014‐9
10.3390/diagnostics11020176
10.1002/mrm.24215
10.1109/JERM.2023.3236153
10.15265/IY‐2016‐016
10.1109/TBME.2016.2521166
10.1002/mrm.22948
10.1002/mrm.29163
10.1002/mrm.22357
10.1016/0730‐725X(88)90441‐9
10.1002/mrm.30009
10.1002/mrm.21120
10.1002/nbm.3729
10.1109/TMTT.1971.1127617
10.1002/mrm.24329
10.1002/mrm.29797
10.1016/j.neuroimage.2008.10.055
10.1038/s41598‐019‐45382‐x
10.1002/jmri.20041
10.1002/mrm.21475
10.1109/ACCESS.2025.3546036
10.21236/ADA303903
10.1259/bjr.73.868.10844863
10.1109/TMI.2009.2015757
10.1016/j.rxeng.2023.01.009
10.1006/jmra.1993.1133
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
5PM
DOI 10.1002/mrm.30547
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate MARTINEZ et al
EISSN 1522-2594
EndPage 1151
ExternalDocumentID PMC12202717
40411380
10_1002_mrm_30547
MRM30547
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: 18HLT05 QUIERO Project
– fundername: he EMPIR Programme, co‐financed by the Participating States and from the European Union's Horizon 2020 Research and Innovation Programme
– fundername: NIST‐PREP (Professional Research Experience Program)
  funderid: 70NANB18H006
– fundername: U.S. Department of Commerce, National Institute of Standards and Technology
– fundername: he EMPIR Programme, co-financed by the Participating States and from the European Union's Horizon 2020 Research and Innovation Programme
– fundername: NIST-PREP (Professional Research Experience Program)
  grantid: 70NANB18H006
– fundername: NIST‐PREP (Professional Research Experience Program)
  grantid: 70NANB18H006
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
5PM
ID FETCH-LOGICAL-c2887-55f1f281beb446e961f6cea76b27b26d5aad4b4d33edabc84d01314d1c3beea53
IEDL.DBID 24P
ISSN 0740-3194
IngestDate Tue Nov 04 02:05:12 EST 2025
Sat Nov 29 14:55:32 EST 2025
Mon Jun 30 02:54:31 EDT 2025
Sat Nov 29 07:43:53 EST 2025
Thu Jul 03 09:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords EPT
SAR
RF heating
Language English
License Attribution
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2887-55f1f281beb446e961f6cea76b27b26d5aad4b4d33edabc84d01314d1c3beea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Correction added after online publication 1 June 2025. The title was corrected to Feasibility study of subject‐specific, brain specific‐absorption‐rate maps retrieved from MRI data. Previously the title referred to 'specific‐absorption‐ratio
ORCID 0000-0003-1098-1693
0000-0001-9070-5255
0000-0002-9188-6403
0000-0002-0719-1159
0000-0002-5437-4396
0000-0001-6415-9967
0000-0002-4829-5130
0000-0002-2382-4710
0000-0002-3274-566X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30547
PMID 40411380
PQID 3229052661
PQPubID 1016391
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12202717
proquest_journals_3229052661
pubmed_primary_40411380
crossref_primary_10_1002_mrm_30547
wiley_primary_10_1002_mrm_30547_MRM30547
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2009; 45
2010; 55
2019; 9
2013; 69
2015; 3
2020; 83
2023; 7
2018; 168
2004; 23
2000; 73
2005; 21
2022; 87
2025; 13
2024; 35
1993; 103
2024; 14
2007; 57
2010; 63
2009; 28
2023; 65
2014; 105
2021; 15
2017; 30
2021; 11
2004; 19
2013; 32
2022
1971; 19
1988; 6
2017; 55
2024; 91
2011; 66
2016; 63
2020; 118
2016
2024; 69
2018; 34
2012; 68
2023; 90
2008; 60
2016; 25
2007; 26
2012; 62
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 69
  start-page: 1157
  year: 2013
  end-page: 1168
  article-title: SAR simulations for high‐field MRI: how much detail, effort, and accuracy is needed?
  publication-title: Magn Reson Med.
– volume: 25
  start-page: 152
  year: 2016
  end-page: 158
  article-title: A review of numerical simulation and analytical modeling for medical devices safety in MRI
  publication-title: Yearb Med Inform.
– volume: 15
  year: 2021
  article-title: Recommendations of choice of head coil and Prescan normalize filter depend on region of interest and task
  publication-title: Front Neurosci.
– volume: 32
  start-page: 1058
  year: 2013
  end-page: 1067
  article-title: From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi‐channel transceiver coil at 7T
  publication-title: IEEE Trans Med Imaging.
– volume: 105
  year: 2014
  article-title: Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: a phantom validation at 7 T
  publication-title: Appl Phys Lett.
– volume: 26
  start-page: 437
  year: 2007
  end-page: 441
  article-title: SAR and temperature: simulations and comparison to regulatory limits for MRI
  publication-title: J Magn Reson Imaging.
– volume: 73
  start-page: 376
  year: 2000
  end-page: 383
  article-title: Quality assurance for MRI: practical experience
  publication-title: Br J Radiol.
– volume: 91
  start-page: 2374
  year: 2024
  end-page: 2390
  article-title: Phantom evaluation of electrical conductivity mapping by MRI: comparison to vector network analyzer measurements and spatial resolution assessment
  publication-title: Magn Reson Med
– volume: 55
  start-page: 5249
  year: 2010
  article-title: Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie–talkie devices
  publication-title: Phys Med Biol.
– volume: 60
  start-page: 312
  year: 2008
  end-page: 319
  article-title: Spatial distribution of RF‐induced E‐fields and implant heating in MRI
  publication-title: Magn Reson Med.
– volume: 66
  start-page: 1767
  year: 2011
  end-page: 1776
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med.
– volume: 45
  start-page: S173
  year: 2009
  end-page: S186
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage.
– volume: 118
  start-page: 483
  year: 2020
  article-title: The International Commission on Non‐Ionizing Radiation Protection (ICNRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)
  publication-title: Health Phys
– volume: 11
  start-page: 3237
  year: 2021
  article-title: EPTlib: an open‐source extensible collection of electric properties tomography techniques
  publication-title: Appl Sci.
– volume: 55
  start-page: 225
  year: 2017
  end-page: 233
  article-title: B1‐based SAR reconstruction using contrast source inversion–electric properties tomography (CSI‐EPT)
  publication-title: Med Biol Eng Comput
– volume: 30
  year: 2017
  article-title: Electric properties tomography: biochemical, physical and technical background, evaluation and clinical applications
  publication-title: NMR Biomed.
– volume: 14
  start-page: 16109
  year: 2024
  article-title: Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI
  publication-title: Sci Rep.
– volume: 168
  start-page: 33
  year: 2018
  end-page: 58
  article-title: SAR simulations & safety
  publication-title: Neuroimage.
– volume: 103
  start-page: 82
  year: 1993
  end-page: 85
  article-title: Mapping of the radiofrequency field
  publication-title: J Magn Reson A.
– volume: 65
  start-page: 447
  year: 2023
  end-page: 457
  article-title: Patient safety in magnetic resonance imaging
  publication-title: Radiol Engl Ed.
– volume: 90
  start-page: 2524
  year: 2023
  end-page: 2538
  article-title: Deep learning‐based local SAR prediction using B1 maps and structural MRI of the head for parallel transmission at 7 T
  publication-title: Magn Reson Med.
– volume: 83
  start-page: 695
  year: 2020
  end-page: 711
  article-title: A deep learning method for image‐based subject‐specific local SAR assessment
  publication-title: Magn Reson Med.
– volume: 68
  start-page: 1117
  year: 2012
  end-page: 1126
  article-title: Patient‐individual local SAR determination: in vivo measurements and numerical validation
  publication-title: Magn Reson Med.
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med.
– volume: 68
  start-page: 1911
  year: 2012
  end-page: 1918
  article-title: B1‐based specific energy absorption rate determination for nonquadrature radiofrequency excitation
  publication-title: Magn Reson Med.
– volume: 13
  start-page: 42029
  year: 2025
  end-page: 42044
  article-title: Magnetic resonance‐based electric properties tomography via Green's integral identity
  publication-title: IEEE Access.
– volume: 19
  start-page: 650
  year: 2004
  end-page: 656
  article-title: Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz
  publication-title: J Magn Reson Imaging.
– volume: 28
  start-page: 1365
  year: 2009
  end-page: 1374
  article-title: Determination of electric conductivity and local SAR via B1 mapping
  publication-title: IEEE Trans Med Imaging.
– volume: 7
  start-page: 168
  year: 2023
  end-page: 175
  article-title: Evaluation and correction of B1+‐based brain subject‐specific SAR maps using electrical properties tomography
  publication-title: IEEE J Electromagn RF Microw Med Biol.
– volume: 63
  start-page: 2250
  year: 2016
  end-page: 2261
  article-title: Fast electromagnetic analysis of MRI transmit RF coils based on accelerated integral equation methods
  publication-title: IEEE Trans Biomed Eng.
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 11
  start-page: 176
  year: 2021
  article-title: Electrical properties tomography: a methodological review
  publication-title: Diagnostics.
– volume: 35
  start-page: 1785
  year: 2024
  end-page: 1793
  article-title: ESR essentials: advanced MR safety in vulnerable patients—practice recommendations by the European Society for Magnetic Resonance in Medicine and Biology
  publication-title: Eur Radiol.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  article-title: FSL
  publication-title: Neuroimage.
– year: 2022
– volume: 9
  start-page: 8895
  year: 2019
  article-title: Opening a new window on MR‐based electrical properties tomography with deep learning
  publication-title: Sci Rep.
– volume: 6
  start-page: 125
  year: 1988
  end-page: 130
  article-title: SAR reduced pulse sequences
  publication-title: Magn Reson Imaging.
– volume: 63
  start-page: 1315
  year: 2010
  end-page: 1322
  article-title: B1 mapping by Bloch‐Siegert shift
  publication-title: Magn Reson Med.
– volume: 69
  year: 2024
  article-title: Polynomial chaos expansion of SAR and temperature increase variability in 3 T MRI due to stochastic input data
  publication-title: Phys Med Biol.
– volume: 19
  start-page: 733
  year: 1971
  end-page: 736
  article-title: Equations for calculating the dielectric constant of saline water (correspondence)
  publication-title: IEEE Trans Microw Theory Tech.
– volume: 3
  start-page: 45
  year: 2015
  article-title: Heating and safety concerns of the radio‐frequency field in MRI
  publication-title: Curr Radiol Rep.
– volume: 34
  start-page: 1248
  year: 2018
  end-page: 1254
  article-title: SAR thresholds for electromagnetic exposure using functional thermal dose limits
  publication-title: Int J Hyperthermia.
– volume: 57
  start-page: 577
  year: 2007
  end-page: 586
  article-title: Simultaneous B homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil
  publication-title: Magn Reson Med.
– start-page: 45
  year: 2016
  end-page: 54
– volume: 87
  start-page: 2997
  year: 2022
  end-page: 3010
  article-title: Individualized and accurate SAR characterization method based on equivalent circuit model for MRI system
  publication-title: Magn Reson Med.
– volume: 21
  start-page: 61
  year: 2005
  end-page: 64
  article-title: Theoretical and experimental investigation of the relationship among SAR, tissues and radio frequencies in MRI
  publication-title: Phys Med.
– ident: e_1_2_9_13_1
  doi: 10.1007/978-3-319-46630-9_5
– ident: e_1_2_9_54_1
  doi: 10.1002/jmri.20977
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.27948
– ident: e_1_2_9_3_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_48_1
  doi: 10.1007/s11517‐016‐1497‐6
– ident: e_1_2_9_16_1
  doi: 10.1088/1361‐6560/ad5070
– ident: e_1_2_9_20_1
  doi: 10.1007/s00330‐024‐11055‐1
– ident: e_1_2_9_43_1
– ident: e_1_2_9_40_1
  doi: 10.1097/HP.0000000000001210
– ident: e_1_2_9_56_1
  doi: 10.1088/0031‐9155/55/17/5249
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.23322
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_9_33_1
  doi: 10.1063/1.4903774
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neuroimage.2017.03.035
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.21149
– ident: e_1_2_9_5_1
  doi: 10.1007/s40134‐015‐0128‐6
– ident: e_1_2_9_10_1
  doi: 10.1016/S1120‐1797(05)80020‐1
– ident: e_1_2_9_35_1
  doi: 10.3390/app11073237
– ident: e_1_2_9_32_1
  doi: 10.1109/TMI.2013.2251653
– ident: e_1_2_9_39_1
  doi: 10.1080/02656736.2018.1424945
– ident: e_1_2_9_44_1
– ident: e_1_2_9_46_1
– ident: e_1_2_9_52_1
– ident: e_1_2_9_26_1
  doi: 10.3389/fnins.2021.735290
– ident: e_1_2_9_50_1
  doi: 10.1038/s41598‐024‐67014‐9
– ident: e_1_2_9_29_1
  doi: 10.3390/diagnostics11020176
– ident: e_1_2_9_31_1
  doi: 10.1002/mrm.24215
– ident: e_1_2_9_34_1
  doi: 10.1109/JERM.2023.3236153
– ident: e_1_2_9_7_1
  doi: 10.15265/IY‐2016‐016
– ident: e_1_2_9_17_1
  doi: 10.1109/TBME.2016.2521166
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.22948
– ident: e_1_2_9_47_1
  doi: 10.1002/mrm.29163
– ident: e_1_2_9_23_1
  doi: 10.1002/mrm.22357
– ident: e_1_2_9_4_1
  doi: 10.1016/0730‐725X(88)90441‐9
– ident: e_1_2_9_49_1
  doi: 10.1002/mrm.30009
– ident: e_1_2_9_24_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_9_27_1
  doi: 10.1002/nbm.3729
– ident: e_1_2_9_42_1
  doi: 10.1109/TMTT.1971.1127617
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.24329
– ident: e_1_2_9_28_1
– ident: e_1_2_9_55_1
  doi: 10.1002/mrm.29797
– ident: e_1_2_9_38_1
  doi: 10.1016/j.neuroimage.2008.10.055
– ident: e_1_2_9_45_1
  doi: 10.1038/s41598‐019‐45382‐x
– ident: e_1_2_9_2_1
  doi: 10.1002/jmri.20041
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.21475
– ident: e_1_2_9_51_1
  doi: 10.1109/ACCESS.2025.3546036
– ident: e_1_2_9_14_1
  doi: 10.21236/ADA303903
– ident: e_1_2_9_41_1
  doi: 10.1259/bjr.73.868.10844863
– ident: e_1_2_9_21_1
  doi: 10.1109/TMI.2009.2015757
– ident: e_1_2_9_15_1
– ident: e_1_2_9_19_1
  doi: 10.1016/j.rxeng.2023.01.009
– ident: e_1_2_9_22_1
  doi: 10.1006/jmra.1993.1133
– ident: e_1_2_9_53_1
SSID ssj0009974
Score 2.4848309
Snippet Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually...
Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated...
Introduction Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1136
SubjectTerms Absorption
Adult
Algorithms
Brain
Brain - diagnostic imaging
Brain mapping
Brain Mapping - methods
Brain slice preparation
Computer Simulation
Data acquisition
Electrical conductivity
Electrical resistivity
EPT
Feasibility Studies
Healthy Volunteers
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging Methodology
In vivo methods and tests
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Neuroimaging
Phantoms, Imaging
Precession
Radio frequency
Radio Waves
RF heating
SAR
Simulation
Title Feasibility study of subject‐specific, brain specific‐absorption‐rate maps retrieved from MRI data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30547
https://www.ncbi.nlm.nih.gov/pubmed/40411380
https://www.proquest.com/docview/3229052661
https://pubmed.ncbi.nlm.nih.gov/PMC12202717
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHFErVC1CgdIEiC_XQA4H1Kw9xQqUrkNgVWhWVW-RXBIfdRQkgcetP6G_kl-BxkoUVqoTUWyw7ieUZjyfO-BuAb35Nk9JwG6WZNZFQhkZZwpPIdq1RaVygooRkE8lgkF5eZudzcNiehan5ENMNN5wZwV7jBFe6OniGho7K0b5XVpG8gwVKeYp5G5g4fybuZjWCORFoaDLRYoW67GB66-xi9MrDfB0o-dKBDStQb_m_-r4CS43jSY5qTfkEc268Ch_6za_1VVgMsaCmWoMr7xY2QbMPJOBnyaQg1Z3GLZvHP3_xcCYGGO0RjfklSFv2Vf79kzIYIV9ACAUZqZuKlCFt172zBE-zkP7wlGBk6jpc9H7--nESNQkZIsPQGElZ0IJ5R9dp_xXpspgWsXEqiTVLNIutVMoKLSznziptUmGR5iMsNVw7pyT_DPPjydh9AZKaxKuCFloz5Zspzb1Z7jppmFRGUNOB3VYy-U3N3chrwjLL_ejlYfQ6sN3KLG-mXpVzJNhL9Ds6sFGLb_oE0RVBVTqQzgh22gBh27M14-urAN2mDLeJqH_n9yDZf_cq7w_74WLz7U234CPDxMIheG0b5m_LO_cV3pv72-uq3AmKvQMLx8PexZkv_T4dPAHOjgMx
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6OtCWyiwQFur6qEHAvErD4kLQkWsSlYVoiq3yK8IDruLEkDqrT-hv5FfUo-TLKxQpUq9xfIksTzj8ZfJ-BuAT35Pk9JwG2W5NZFQhkZ5ytPIxtaoLKnQUEKxiXQ0ys7P828LsN-fhWn5IWYBN1wZwV_jAseA9N49a-i4Hu96axXpE1gSHmhg4YYfw9E95W7ecjCnAj1NLnpeoZjtzW6d340eQczHmZIPEWzYgo5e_d_gX8NyBz3JQWsrb2DBTVbgedH9XF-BZyEb1DSrcOGBYZc2-5MEAloyrUhzozFoc_frNx7PxBSjHaKxwgTp275L6WZaBzfkG0hDQcbqqiF1KNx16yzB8yykOB0SzE19C9-PvpwdHkddSYbIMHRHUla0Yh7qOu2_I12e0CoxTqWJZqlmiZVKWaGF5dxZpU0mLPL5CEsN184pyddgcTKduA0gmUm9MWihNVNeTGnuHXPspGFSGUHNAD72qimvWuaNsuVYZqWfvTLM3gC2e6WV3eJrSo4c9hKRxwDWW_3NniBiQSnP4gFkc5qdCSDd9nzP5PIi0G5ThoEi6t_5Oaj276Mqi9MiXGz-u-gHeHF8VpyUJ8PR1y14ybDMcEhl24bF6_rGvYOn5vb6sqnfByv_A4iEBNo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHdGkRl9JSaLelxap66KGB-JWH1EsFrIpgV2hVJG6RXxEc9qEEkLj1J_Q39pfU4yRLV6gSUm-x7CSWZzyeOONvAD75NU1Kw22U5dZEQhka5SlPIxtbo7KkREUJySbS0Si7uMjPVuBrdxam4UMsNtxwZgR7jRPczW25f08NnVSTPa-tIn0CqwKTyPRg9XA8OD-9h-7mDYU5FWhrctGRhWK2v7h5eT164GQ-jJX824cNi9Bg4_-6_wKet84n-dZoy0tYcdNNWBu2v9c34VmIBzX1K7j0rmEbOHtHAoKWzEpS32jctvn98xce0MQgoy9EY44J0pV9ldL1rAqGyBcQREEmal6TKqTuunWW4IkWMhwfE4xO3YLzwdGPg-9Rm5QhMgwNkpQlLZl3dp32X5IuT2iZGKfSRLNUs8RKpazQwnLurNImExaJPsJSw7VzSvJt6E1nU_cGSGZSrw5aaM2Ub6Y096Y5dtIwqYygpg8fO9EU84a9UTSUZVb40SvC6PVhpxNa0U6_uuBIsZfoe_ThdSO_xRNELCjlWdyHbEmyiwYI3F6umV5dBvA2ZbhVRP07PwfR_rtXxXA8DBdvH990F9bODgfF6fHo5B2sM8wzHGLZdqB3Xd249_DU3F5f1dWHVs3_ACgnBYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+study+of+subject%E2%80%90specific%2C+brain+specific%E2%80%90absorption%E2%80%90rate+maps+retrieved+from+MRI+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Martinez%2C+Jessica+A.&rft.au=Zanovello%2C+Umberto&rft.au=Arduino%2C+Alessandro&rft.au=Hu%2C+Houchun+Harry&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=1136&rft.epage=1151&rft_id=info:doi/10.1002%2Fmrm.30547&rft.externalDBID=10.1002%252Fmrm.30547&rft.externalDocID=MRM30547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon