An Exact Quantized Decentralized Gradient Descent Algorithm

We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 67; no. 19; pp. 4934 - 4947
Main Authors: Reisizadeh, Amirhossein, Mokhtari, Aryan, Hassani, Hamed, Pedarsani, Ramtin
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results.
AbstractList We consider the problem of decentralized consensus optimization, where the sum of [Formula Omitted] smooth and strongly convex functions are minimized over [Formula Omitted] distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results.
We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results.
Author Pedarsani, Ramtin
Reisizadeh, Amirhossein
Hassani, Hamed
Mokhtari, Aryan
Author_xml – sequence: 1
  givenname: Amirhossein
  orcidid: 0000-0002-1730-8402
  surname: Reisizadeh
  fullname: Reisizadeh, Amirhossein
  email: reisizadeh@ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
– sequence: 2
  givenname: Aryan
  surname: Mokhtari
  fullname: Mokhtari, Aryan
  email: mokhtari@austin.utexas.edu
  organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
– sequence: 3
  givenname: Hamed
  surname: Hassani
  fullname: Hassani, Hamed
  email: hassani@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Ramtin
  orcidid: 0000-0002-1126-0292
  surname: Pedarsani
  fullname: Pedarsani, Ramtin
  email: ramtin@ece.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
BookMark eNp9UE1LAzEQDaJgW70LXhY8b833B55KrVUoqFjBW8juZjVlu1uTFNRfb9YWDx5kDjNveG8-3hActl1rAThDcIwQVJfLp4cxhkiNsSJYCn4ABkhRlEMq-GGqISM5k-LlGAxDWEGIKFV8AK4mbTb7MGXMHremje7LVtm1LW0bvWl-0NybyiWc2qHvZ5PmtfMuvq1PwFFtmmBP93kEnm9my-ltvrif300ni7xMh8TcyoIxjImCtSopkaJWuDZIGW6sMoKwgnFa1YUoVApRFBxxrDilhpNKSERG4GI3d-O7960NUa-6rW_TSo2xkEQJzGRi8R2r9F0I3ta6dNFE1_WvuEYjqHujdDJK90bpvVFJCP8IN96tjf_8T3K-kzhr7S9dCskR5eQbGLZ0Ug
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3517710
crossref_primary_10_1016_j_neucom_2024_129191
crossref_primary_10_1109_TNSE_2025_3546333
crossref_primary_10_1109_JSAC_2020_3041388
crossref_primary_10_1016_j_ifacol_2023_10_1029
crossref_primary_10_1016_j_automatica_2024_111828
crossref_primary_10_1016_j_future_2025_107740
crossref_primary_10_1109_JSAC_2023_3242710
crossref_primary_10_1109_TIT_2022_3171173
crossref_primary_10_1109_TSP_2020_3048229
crossref_primary_10_1109_JPROC_2020_3024266
crossref_primary_10_1109_TSP_2025_3564416
crossref_primary_10_1073_pnas_2319625121
crossref_primary_10_1109_TPDS_2023_3303967
crossref_primary_10_1109_TSP_2024_3363887
crossref_primary_10_1109_TAC_2022_3219289
crossref_primary_10_1109_JSAC_2021_3118428
crossref_primary_10_1016_j_ejcon_2022_100682
crossref_primary_10_1109_TSP_2021_3134885
crossref_primary_10_1016_j_automatica_2023_111186
crossref_primary_10_1016_j_jpdc_2022_07_010
crossref_primary_10_1016_j_jfranklin_2023_07_006
crossref_primary_10_1109_JSTSP_2022_3162989
crossref_primary_10_1109_LCSYS_2023_3290470
crossref_primary_10_1109_TAC_2022_3207866
crossref_primary_10_1109_LCSYS_2024_3519013
crossref_primary_10_1109_TITS_2022_3145823
crossref_primary_10_1109_MRA_2024_3352852
crossref_primary_10_1109_TAC_2022_3225515
crossref_primary_10_1109_TAC_2025_3548470
crossref_primary_10_1109_TAC_2021_3126253
crossref_primary_10_1109_TCNS_2024_3431413
crossref_primary_10_1109_TSP_2022_3160238
crossref_primary_10_1109_TCNS_2025_3539495
crossref_primary_10_1109_TAC_2024_3419186
crossref_primary_10_1109_TCOMM_2020_3026398
crossref_primary_10_1049_cmu2_12379
crossref_primary_10_1109_TCYB_2023_3336842
crossref_primary_10_1109_JBHI_2022_3187471
crossref_primary_10_1109_TAC_2022_3212006
crossref_primary_10_1109_TSP_2023_3287333
crossref_primary_10_1109_TWC_2021_3076613
crossref_primary_10_1137_19M1258864
crossref_primary_10_1088_1742_6596_1908_1_012026
crossref_primary_10_1016_j_automatica_2025_112338
crossref_primary_10_1109_TSP_2023_3301121
crossref_primary_10_1109_OJSP_2025_3557332
crossref_primary_10_3390_math10203751
crossref_primary_10_1109_TAC_2023_3241771
crossref_primary_10_1109_LCSYS_2021_3137859
crossref_primary_10_1109_OJCOMS_2025_3566464
crossref_primary_10_1109_TSP_2025_3568045
crossref_primary_10_1109_TCYB_2024_3384924
crossref_primary_10_1109_TSP_2020_2997394
crossref_primary_10_1016_j_jfranklin_2025_107865
crossref_primary_10_1016_j_automatica_2023_111363
crossref_primary_10_1109_TSP_2021_3092347
crossref_primary_10_1109_TAC_2025_3527737
crossref_primary_10_1109_TAC_2022_3151734
crossref_primary_10_1109_ACCESS_2023_3297112
crossref_primary_10_1109_TCCN_2021_3074908
crossref_primary_10_1109_TSP_2024_3460690
crossref_primary_10_1109_MSP_2020_2974267
crossref_primary_10_1109_JSTSP_2022_3152445
crossref_primary_10_1109_TSIPN_2022_3156425
crossref_primary_10_1109_TAC_2022_3198030
crossref_primary_10_1109_TSIPN_2024_3464350
crossref_primary_10_32604_cmes_2023_043247
crossref_primary_10_1109_TSP_2022_3194369
crossref_primary_10_1109_JIOT_2023_3296493
crossref_primary_10_1109_JSAC_2023_3345393
crossref_primary_10_1109_TNSE_2025_3540175
crossref_primary_10_1109_TNNLS_2022_3184957
crossref_primary_10_1137_23M1599379
Cites_doi 10.1109/ITW.2017.8278011
10.1109/TAC.2013.2253218
10.1137/130943170
10.1109/TAC.1986.1104412
10.1109/CDC.2018.8619539
10.1145/2043164.2018448
10.1109/TAC.2014.2298712
10.1109/SSP.2007.4301337
10.1109/TSP.2016.2617829
10.1109/CDC.2008.4738860
10.1109/TAC.2016.2530939
10.1109/JSAC.2005.843546
10.1109/ISIT.2006.261862
10.1109/MCS.2007.338264
10.1145/984622.984626
10.1109/TAC.2011.2161027
10.1109/CDC.2014.7039989
10.1109/ISIT.2016.7541478
10.1109/TSP.2016.2548989
10.1109/TSP.2014.2304432
10.1109/TII.2012.2219061
10.1109/CDC.2003.1273057
10.1109/ISIT.2018.8437860
10.1109/TKDE.2012.191
10.1109/ACSSC.2018.8645345
10.1109/TAC.2009.2031203
10.1561/2200000016
10.1007/s10957-010-9737-7
10.1109/JPROC.2006.887293
10.1109/TSP.2017.2666776
10.1109/CDC.2012.6426375
10.1109/Allerton.2012.6483403
10.1109/TSP.2010.2057247
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2019.2932876
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4947
ExternalDocumentID 10_1109_TSP_2019_2932876
8786146
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 1755707; 1837253
– fundername: National Science Foundation
  grantid: CCF-1755808
  funderid: 10.13039/100000001
– fundername: UC Office of President
  grantid: LFR-18-548175
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c287t-e8b5522390f9c4387f92fa19a6ae9a735b564dfb7b9b9b7bb61629644a63d7813
IEDL.DBID RIE
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482592700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:08:42 EDT 2025
Tue Nov 18 21:39:58 EST 2025
Sat Nov 29 04:10:49 EST 2025
Wed Aug 27 02:41:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-e8b5522390f9c4387f92fa19a6ae9a735b564dfb7b9b9b7bb61629644a63d7813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1730-8402
0000-0002-1126-0292
PQID 2278397258
PQPubID 85478
PageCount 14
ParticipantIDs crossref_primary_10_1109_TSP_2019_2932876
crossref_citationtrail_10_1109_TSP_2019_2932876
ieee_primary_8786146
proquest_journals_2278397258
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
li (ref33) 2017
ref15
ref36
ref14
ref31
ref30
ref11
ref10
ref2
seide (ref23) 0
ref1
ref39
ref17
ref16
ref19
ref18
zhang (ref40) 2018
ren (ref6) 2007; 27
ref24
ref26
ref25
ref20
ref22
ram (ref13) 2010; 147
ref21
alistarh (ref32) 0
ref28
ref27
ref29
ref8
ref7
tsitsiklis (ref9) 1984
dheeru (ref37) 2017
ref4
ref3
ref5
doan (ref38) 2018
References_xml – ident: ref35
  doi: 10.1109/ITW.2017.8278011
– ident: ref19
  doi: 10.1109/TAC.2013.2253218
– ident: ref11
  doi: 10.1137/130943170
– ident: ref8
  doi: 10.1109/TAC.1986.1104412
– ident: ref1
  doi: 10.1109/CDC.2018.8619539
– ident: ref24
  doi: 10.1145/2043164.2018448
– start-page: 1058
  year: 0
  ident: ref23
  article-title: 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– ident: ref12
  doi: 10.1109/TAC.2014.2298712
– ident: ref29
  doi: 10.1109/SSP.2007.4301337
– ident: ref20
  doi: 10.1109/TSP.2016.2617829
– ident: ref30
  doi: 10.1109/CDC.2008.4738860
– year: 2017
  ident: ref37
  article-title: UCI machine learning repository
– ident: ref28
  doi: 10.1109/TAC.2016.2530939
– ident: ref27
  doi: 10.1109/JSAC.2005.843546
– year: 2018
  ident: ref40
  article-title: Compressed distributed gradient descent: Communication-efficient consensus over networks
– start-page: 109
  year: 2017
  ident: ref33
  article-title: A fundamental tradeoff between computation and communication in distributed computing
  publication-title: IEEE Trans Inf Theory
– ident: ref26
  doi: 10.1109/ISIT.2006.261862
– volume: 27
  start-page: 71
  year: 2007
  ident: ref6
  article-title: Information consensus in multivehicle cooperative control
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2007.338264
– ident: ref4
  doi: 10.1145/984622.984626
– ident: ref17
  doi: 10.1109/TAC.2011.2161027
– ident: ref31
  doi: 10.1109/CDC.2014.7039989
– ident: ref34
  doi: 10.1109/ISIT.2016.7541478
– ident: ref16
  doi: 10.1109/TSP.2016.2548989
– start-page: 1707
  year: 0
  ident: ref32
  article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2018
  ident: ref38
  article-title: Accelerating the convergence rates of distributed subgradient methods with adaptive quantization
– ident: ref15
  doi: 10.1109/TSP.2014.2304432
– ident: ref2
  doi: 10.1109/TII.2012.2219061
– year: 1984
  ident: ref9
  article-title: Problems in decentralized decision making and computation
– ident: ref25
  doi: 10.1109/CDC.2003.1273057
– ident: ref36
  doi: 10.1109/ISIT.2018.8437860
– ident: ref22
  doi: 10.1109/TKDE.2012.191
– ident: ref39
  doi: 10.1109/ACSSC.2018.8645345
– ident: ref10
  doi: 10.1109/TAC.2009.2031203
– ident: ref14
  doi: 10.1561/2200000016
– volume: 147
  start-page: 516
  year: 2010
  ident: ref13
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-010-9737-7
– ident: ref5
  doi: 10.1109/JPROC.2006.887293
– ident: ref21
  doi: 10.1109/TSP.2017.2666776
– ident: ref18
  doi: 10.1109/CDC.2012.6426375
– ident: ref7
  doi: 10.1109/Allerton.2012.6483403
– ident: ref3
  doi: 10.1109/TSP.2010.2057247
SSID ssj0014496
Score 2.5892315
Snippet We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>...
We consider the problem of decentralized consensus optimization, where the sum of [Formula Omitted] smooth and strongly convex functions are minimized over...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4934
SubjectTerms Algorithms
Communication-efficiency
Computer simulation
Convergence
Convex functions
Convexity
Counters
decentralized optimization
gradient methods
Linear programming
Nickel
Nodes
Optimization
quantization
Quantization (signal)
Signal processing algorithms
Smoothness
Title An Exact Quantized Decentralized Gradient Descent Algorithm
URI https://ieeexplore.ieee.org/document/8786146
https://www.proquest.com/docview/2278397258
Volume 67
WOSCitedRecordID wos000482592700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH60xYMe3KpYrZKDF8G0zTIbnoq2eioVK_QWZosWaittKuKvd2aSBkURJJckzITJ9zLz3uQtH8A5VSRCRGKfp1L5MVeBT1OE_FBxo1EEZqGWjmyCDAZ0PGbDClyWuTBaaxd8plv21Pny1Vyu7K-yNiXUaBNchSohOM_VKj0Gcey4uIy5EPmIkvHaJdlh7dHD0MZwsZZRbWaDgL-pIMep8mMhdtqlv_O_ce3CdmFFet1c7HtQ0bN92PpSW7AOV92Z13vnMvPuVwa9yYdW3o0uYjHd1e3ChXtl5rYr6eR1p0_zxSR7fjmAx35vdH3nF0wJvjQvlPmaCmQMqYh1UibjiJKUhSkPGMdcM26kIRCOVSqIYOYgQuAAW39rzHGkCA2iQ6jN5jN9BJ6OSWoWHUYp1zHigklkJrnAKiAp5iJsQHsNXiKLMuKWzWKauO1EhyUG7sTCnRRwN-Ci7PGal9D4o23dwlu2K5BtQHMtn6SYY8vEJvEaaypE9Pj3XiewaZ-dh941oZYtVvoUNuRbNlkuztzn8wmuLsGt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gXpwF-uagxfB2CaZFU9F64JaKlboLcwWLdRW2lTEX-_MNC2KIkguSZghk-9l5r3JWz6AQ6ZpgqkiociUDpHQUcgyjMNYC6tRJOGxUZ5sgtbrrNXijSk4nuTCGGN88Jk5cafel697auh-lZUZZVabkGmYxQjFlVG21sRngJBn47IGQxJiRltjp2SFl5sPDRfFxU-scrNbBPJNCXlWlR9LsdcvF8v_G9kKLBV2ZFAdCX4Vpkx3DRa_VBdch9NqN6i9C5UH90OLX_vD6ODcFNGY_uqy7wO-cnvbF3UKqp2nXr-dP79swONFrXl2FRZcCaGyL5SHhklsTamEVzKuUMJoxuNMRFwQYbiw8pCYIJ1JKrk9qJQkIs7jigRJNGVRsgkz3V7XbEFgEM3sssMZEwZhIbnCdppLoiOaESHjEpTH4KWqKCTu-Cw6qd9QVHhq4U4d3GkBdwmOJj1eR0U0_mi77uCdtCuQLcHuWD5pMcsGqUvjtfZUjNn2770OYP6qeXeb3l7Xb3ZgwT1nFIi3CzN5f2j2YE695e1Bf99_Sp_uxcT0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Exact+Quantized+Decentralized+Gradient+Descent+Algorithm&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Reisizadeh%2C+Amirhossein&rft.au=Mokhtari%2C+Aryan&rft.au=Hassani%2C+Hamed&rft.au=Pedarsani%2C+Ramtin&rft.date=2019-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=19&rft.spage=4934&rft_id=info:doi/10.1109%2FTSP.2019.2932876&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon