An Exact Quantized Decentralized Gradient Descent Algorithm
We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 67; číslo 19; s. 4934 - 4947 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results. |
|---|---|
| AbstractList | We consider the problem of decentralized consensus optimization, where the sum of [Formula Omitted] smooth and strongly convex functions are minimized over [Formula Omitted] distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results. We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results. |
| Author | Pedarsani, Ramtin Reisizadeh, Amirhossein Hassani, Hamed Mokhtari, Aryan |
| Author_xml | – sequence: 1 givenname: Amirhossein orcidid: 0000-0002-1730-8402 surname: Reisizadeh fullname: Reisizadeh, Amirhossein email: reisizadeh@ucsb.edu organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA – sequence: 2 givenname: Aryan surname: Mokhtari fullname: Mokhtari, Aryan email: mokhtari@austin.utexas.edu organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA – sequence: 3 givenname: Hamed surname: Hassani fullname: Hassani, Hamed email: hassani@seas.upenn.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA – sequence: 4 givenname: Ramtin orcidid: 0000-0002-1126-0292 surname: Pedarsani fullname: Pedarsani, Ramtin email: ramtin@ece.ucsb.edu organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA |
| BookMark | eNp9UE1LAzEQDaJgW70LXhY8b833B55KrVUoqFjBW8juZjVlu1uTFNRfb9YWDx5kDjNveG8-3hActl1rAThDcIwQVJfLp4cxhkiNsSJYCn4ABkhRlEMq-GGqISM5k-LlGAxDWEGIKFV8AK4mbTb7MGXMHremje7LVtm1LW0bvWl-0NybyiWc2qHvZ5PmtfMuvq1PwFFtmmBP93kEnm9my-ltvrif300ni7xMh8TcyoIxjImCtSopkaJWuDZIGW6sMoKwgnFa1YUoVApRFBxxrDilhpNKSERG4GI3d-O7960NUa-6rW_TSo2xkEQJzGRi8R2r9F0I3ta6dNFE1_WvuEYjqHujdDJK90bpvVFJCP8IN96tjf_8T3K-kzhr7S9dCskR5eQbGLZ0Ug |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3517710 crossref_primary_10_1016_j_neucom_2024_129191 crossref_primary_10_1109_TNSE_2025_3546333 crossref_primary_10_1109_JSAC_2020_3041388 crossref_primary_10_1016_j_ifacol_2023_10_1029 crossref_primary_10_1016_j_automatica_2024_111828 crossref_primary_10_1016_j_future_2025_107740 crossref_primary_10_1109_JSAC_2023_3242710 crossref_primary_10_1109_TIT_2022_3171173 crossref_primary_10_1109_TSP_2020_3048229 crossref_primary_10_1109_JPROC_2020_3024266 crossref_primary_10_1109_TSP_2025_3564416 crossref_primary_10_1073_pnas_2319625121 crossref_primary_10_1109_TPDS_2023_3303967 crossref_primary_10_1109_TSP_2024_3363887 crossref_primary_10_1109_TAC_2022_3219289 crossref_primary_10_1109_JSAC_2021_3118428 crossref_primary_10_1016_j_ejcon_2022_100682 crossref_primary_10_1109_TSP_2021_3134885 crossref_primary_10_1016_j_automatica_2023_111186 crossref_primary_10_1016_j_jpdc_2022_07_010 crossref_primary_10_1016_j_jfranklin_2023_07_006 crossref_primary_10_1109_JSTSP_2022_3162989 crossref_primary_10_1109_LCSYS_2023_3290470 crossref_primary_10_1109_TAC_2022_3207866 crossref_primary_10_1109_LCSYS_2024_3519013 crossref_primary_10_1109_TITS_2022_3145823 crossref_primary_10_1109_MRA_2024_3352852 crossref_primary_10_1109_TAC_2022_3225515 crossref_primary_10_1109_TAC_2025_3548470 crossref_primary_10_1109_TAC_2021_3126253 crossref_primary_10_1109_TCNS_2024_3431413 crossref_primary_10_1109_TSP_2022_3160238 crossref_primary_10_1109_TCNS_2025_3539495 crossref_primary_10_1109_TAC_2024_3419186 crossref_primary_10_1109_TCOMM_2020_3026398 crossref_primary_10_1049_cmu2_12379 crossref_primary_10_1109_TCYB_2023_3336842 crossref_primary_10_1109_JBHI_2022_3187471 crossref_primary_10_1109_TAC_2022_3212006 crossref_primary_10_1109_TSP_2023_3287333 crossref_primary_10_1109_TWC_2021_3076613 crossref_primary_10_1137_19M1258864 crossref_primary_10_1088_1742_6596_1908_1_012026 crossref_primary_10_1016_j_automatica_2025_112338 crossref_primary_10_1109_TSP_2023_3301121 crossref_primary_10_1109_OJSP_2025_3557332 crossref_primary_10_3390_math10203751 crossref_primary_10_1109_TAC_2023_3241771 crossref_primary_10_1109_LCSYS_2021_3137859 crossref_primary_10_1109_OJCOMS_2025_3566464 crossref_primary_10_1109_TSP_2025_3568045 crossref_primary_10_1109_TCYB_2024_3384924 crossref_primary_10_1109_TSP_2020_2997394 crossref_primary_10_1016_j_jfranklin_2025_107865 crossref_primary_10_1016_j_automatica_2023_111363 crossref_primary_10_1109_TSP_2021_3092347 crossref_primary_10_1109_TAC_2025_3527737 crossref_primary_10_1109_TAC_2022_3151734 crossref_primary_10_1109_ACCESS_2023_3297112 crossref_primary_10_1109_TCCN_2021_3074908 crossref_primary_10_1109_TSP_2024_3460690 crossref_primary_10_1109_MSP_2020_2974267 crossref_primary_10_1109_JSTSP_2022_3152445 crossref_primary_10_1109_TSIPN_2022_3156425 crossref_primary_10_1109_TAC_2022_3198030 crossref_primary_10_1109_TSIPN_2024_3464350 crossref_primary_10_32604_cmes_2023_043247 crossref_primary_10_1109_TSP_2022_3194369 crossref_primary_10_1109_JIOT_2023_3296493 crossref_primary_10_1109_JSAC_2023_3345393 crossref_primary_10_1109_TNSE_2025_3540175 crossref_primary_10_1109_TNNLS_2022_3184957 crossref_primary_10_1137_23M1599379 |
| Cites_doi | 10.1109/ITW.2017.8278011 10.1109/TAC.2013.2253218 10.1137/130943170 10.1109/TAC.1986.1104412 10.1109/CDC.2018.8619539 10.1145/2043164.2018448 10.1109/TAC.2014.2298712 10.1109/SSP.2007.4301337 10.1109/TSP.2016.2617829 10.1109/CDC.2008.4738860 10.1109/TAC.2016.2530939 10.1109/JSAC.2005.843546 10.1109/ISIT.2006.261862 10.1109/MCS.2007.338264 10.1145/984622.984626 10.1109/TAC.2011.2161027 10.1109/CDC.2014.7039989 10.1109/ISIT.2016.7541478 10.1109/TSP.2016.2548989 10.1109/TSP.2014.2304432 10.1109/TII.2012.2219061 10.1109/CDC.2003.1273057 10.1109/ISIT.2018.8437860 10.1109/TKDE.2012.191 10.1109/ACSSC.2018.8645345 10.1109/TAC.2009.2031203 10.1561/2200000016 10.1007/s10957-010-9737-7 10.1109/JPROC.2006.887293 10.1109/TSP.2017.2666776 10.1109/CDC.2012.6426375 10.1109/Allerton.2012.6483403 10.1109/TSP.2010.2057247 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2019.2932876 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 4947 |
| ExternalDocumentID | 10_1109_TSP_2019_2932876 8786146 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 1755707; 1837253 – fundername: National Science Foundation grantid: CCF-1755808 funderid: 10.13039/100000001 – fundername: UC Office of President grantid: LFR-18-548175 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c287t-e8b5522390f9c4387f92fa19a6ae9a735b564dfb7b9b9b7bb61629644a63d7813 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482592700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:08:42 EDT 2025 Tue Nov 18 21:39:58 EST 2025 Sat Nov 29 04:10:49 EST 2025 Wed Aug 27 02:41:42 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c287t-e8b5522390f9c4387f92fa19a6ae9a735b564dfb7b9b9b7bb61629644a63d7813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1730-8402 0000-0002-1126-0292 |
| PQID | 2278397258 |
| PQPubID | 85478 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TSP_2019_2932876 crossref_citationtrail_10_1109_TSP_2019_2932876 ieee_primary_8786146 proquest_journals_2278397258 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 li (ref33) 2017 ref15 ref36 ref14 ref31 ref30 ref11 ref10 ref2 seide (ref23) 0 ref1 ref39 ref17 ref16 ref19 ref18 zhang (ref40) 2018 ren (ref6) 2007; 27 ref24 ref26 ref25 ref20 ref22 ram (ref13) 2010; 147 ref21 alistarh (ref32) 0 ref28 ref27 ref29 ref8 ref7 tsitsiklis (ref9) 1984 dheeru (ref37) 2017 ref4 ref3 ref5 doan (ref38) 2018 |
| References_xml | – ident: ref35 doi: 10.1109/ITW.2017.8278011 – ident: ref19 doi: 10.1109/TAC.2013.2253218 – ident: ref11 doi: 10.1137/130943170 – ident: ref8 doi: 10.1109/TAC.1986.1104412 – ident: ref1 doi: 10.1109/CDC.2018.8619539 – ident: ref24 doi: 10.1145/2043164.2018448 – start-page: 1058 year: 0 ident: ref23 article-title: 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs publication-title: Proc Annu Conf Int Speech Commun Assoc – ident: ref12 doi: 10.1109/TAC.2014.2298712 – ident: ref29 doi: 10.1109/SSP.2007.4301337 – ident: ref20 doi: 10.1109/TSP.2016.2617829 – ident: ref30 doi: 10.1109/CDC.2008.4738860 – year: 2017 ident: ref37 article-title: UCI machine learning repository – ident: ref28 doi: 10.1109/TAC.2016.2530939 – ident: ref27 doi: 10.1109/JSAC.2005.843546 – year: 2018 ident: ref40 article-title: Compressed distributed gradient descent: Communication-efficient consensus over networks – start-page: 109 year: 2017 ident: ref33 article-title: A fundamental tradeoff between computation and communication in distributed computing publication-title: IEEE Trans Inf Theory – ident: ref26 doi: 10.1109/ISIT.2006.261862 – volume: 27 start-page: 71 year: 2007 ident: ref6 article-title: Information consensus in multivehicle cooperative control publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2007.338264 – ident: ref4 doi: 10.1145/984622.984626 – ident: ref17 doi: 10.1109/TAC.2011.2161027 – ident: ref31 doi: 10.1109/CDC.2014.7039989 – ident: ref34 doi: 10.1109/ISIT.2016.7541478 – ident: ref16 doi: 10.1109/TSP.2016.2548989 – start-page: 1707 year: 0 ident: ref32 article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding publication-title: Proc Adv Neural Inf Process Syst – year: 2018 ident: ref38 article-title: Accelerating the convergence rates of distributed subgradient methods with adaptive quantization – ident: ref15 doi: 10.1109/TSP.2014.2304432 – ident: ref2 doi: 10.1109/TII.2012.2219061 – year: 1984 ident: ref9 article-title: Problems in decentralized decision making and computation – ident: ref25 doi: 10.1109/CDC.2003.1273057 – ident: ref36 doi: 10.1109/ISIT.2018.8437860 – ident: ref22 doi: 10.1109/TKDE.2012.191 – ident: ref39 doi: 10.1109/ACSSC.2018.8645345 – ident: ref10 doi: 10.1109/TAC.2009.2031203 – ident: ref14 doi: 10.1561/2200000016 – volume: 147 start-page: 516 year: 2010 ident: ref13 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J Optim Theory Appl doi: 10.1007/s10957-010-9737-7 – ident: ref5 doi: 10.1109/JPROC.2006.887293 – ident: ref21 doi: 10.1109/TSP.2017.2666776 – ident: ref18 doi: 10.1109/CDC.2012.6426375 – ident: ref7 doi: 10.1109/Allerton.2012.6483403 – ident: ref3 doi: 10.1109/TSP.2010.2057247 |
| SSID | ssj0014496 |
| Score | 2.5892904 |
| Snippet | We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>... We consider the problem of decentralized consensus optimization, where the sum of [Formula Omitted] smooth and strongly convex functions are minimized over... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4934 |
| SubjectTerms | Algorithms Communication-efficiency Computer simulation Convergence Convex functions Convexity Counters decentralized optimization gradient methods Linear programming Nickel Nodes Optimization quantization Quantization (signal) Signal processing algorithms Smoothness |
| Title | An Exact Quantized Decentralized Gradient Descent Algorithm |
| URI | https://ieeexplore.ieee.org/document/8786146 https://www.proquest.com/docview/2278397258 |
| Volume | 67 |
| WOSCitedRecordID | wos000482592700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoPXgS7dU2bDzwN3fQ0Jk7YrSRpqoPZSdeJ-NebpF1RFEF6aUteSX-v7ful7wvgnHpIMhUmrlIKu4EkwuUk8V2pFcJlEscs9myzCTIa0emUjWtwWeXCaBkbfKY6Ztf68uOFXJlfZV1KqLYmuA51QnCRq1V5DILA9uLSdAG5ISXTtUvSY93Jw9jEcLGONm16gYC_mSDbU-XHh9hal-HO_-a1C9sli3T6hdr3oKbSfdj6UluwCVf91Bm8c5k79yuN3uxDxc6NKmMx7dFtZsO9cn3alnRy-vOnRTbLn18O4HE4mFzfuWWnBFfqG8pdRUWoiRRiXsJkgChJmJ_wHuOYK8YJCkWIgzgRRDC9ESFwDxt_a8AxigntoUNopItUHYGDfE1JBPKNhzHAiPOEC64wQqFSklG_Bd01eJEsy4ibbhbzyC4nPBZpuCMDd1TC3YKLSuK1KKHxx9imgbcaVyLbgvZaP1H5ji0jk8Sr2ZSe7_HvUiewaa5dhN61oZFnK3UKG_Itny2zM_v4fALbZ8Hx |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gP3qY4r33wRbBb16S54NPQTUUdEyfsrSRpqoO5ydaJ-OtNsm4oiiB9aUsOTb_T9nzpuQEcswAprqPU11oTHysqfUHT0FdGIUKlScKTwDWboM0m63R4qwCns1wYI-OCz3TZ7jpffjJQY_urrMIoM9aEzMFChHEYTLK1Zj4DjF03LkMYkB8x2pk6JQNeaT-0bBQXLxvjZpYI5JsRcl1VfnyKnX1prP1vZuuwmvNIrzZR_AYUdH8TVr5UFyzCWa3v1d-Fyrz7scGv-6ET70Ln0Zju6HLoAr4yc9oVdfJqvafBsJs9v2zBY6PePr_y814JvjI3lPmaychQKcSDlCuMGE15mIoqF0RoLiiKZERwkkoqudmolKRKrMcVC4ISyqpoG-b7g77eAQ-FhpRIFFofIyZIiFRIoQlCkdaKs7AElSl4scoLidt-Fr3YLSgCHhu4Ywt3nMNdgpOZxOukiMYfY4sW3tm4HNkS7E_1E-dv2Si2abyGT5n57v4udQRLV-272_j2unmzB8v2OpNAvH2Yz4ZjfQCL6i3rjoaH7lH6BCBhxTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Exact+Quantized+Decentralized+Gradient+Descent+Algorithm&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Reisizadeh%2C+Amirhossein&rft.au=Mokhtari%2C+Aryan&rft.au=Hassani%2C+Hamed&rft.au=Pedarsani%2C+Ramtin&rft.date=2019-10-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=19&rft.spage=4934&rft.epage=4947&rft_id=info:doi/10.1109%2FTSP.2019.2932876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2019_2932876 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |