An Exact Quantized Decentralized Gradient Descent Algorithm
We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 67; číslo 19; s. 4934 - 4947 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider the problem of decentralized consensus optimization, where the sum of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> smooth and strongly convex functions are minimized over <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2019.2932876 |