Algebraic Signal Processing Theory: Cooley–Tukey-Type Algorithms for Polynomial Transforms Based on Induction
A polynomial transform is the multiplication of an input vector x∈Cn by a matrix Pb,α∈Cn×n, whose (k,[cursive l])th element is defined as p[cursive l](αk) for polynomials p[cursive l](x)∈C[x] from a list b={p0(x),...,pn-1(x)} and sample points αk∈C from a list α={α0,...,αn-1}. Such transforms find a...
Saved in:
| Published in: | SIAM journal on matrix analysis and applications Vol. 32; no. 2; pp. 364 - 384 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.04.2011
|
| Subjects: | |
| ISSN: | 0895-4798, 1095-7162 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A polynomial transform is the multiplication of an input vector x∈Cn by a matrix Pb,α∈Cn×n, whose (k,[cursive l])th element is defined as p[cursive l](αk) for polynomials p[cursive l](x)∈C[x] from a list b={p0(x),...,pn-1(x)} and sample points αk∈C from a list α={α0,...,αn-1}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. An important example includes the discrete Fourier transform. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0895-4798 1095-7162 |
| DOI: | 10.1137/100805777 |