Algebraic Signal Processing Theory: Cooley–Tukey-Type Algorithms for Polynomial Transforms Based on Induction
A polynomial transform is the multiplication of an input vector x∈Cn by a matrix Pb,α∈Cn×n, whose (k,[cursive l])th element is defined as p[cursive l](αk) for polynomials p[cursive l](x)∈C[x] from a list b={p0(x),...,pn-1(x)} and sample points αk∈C from a list α={α0,...,αn-1}. Such transforms find a...
Uloženo v:
| Vydáno v: | SIAM journal on matrix analysis and applications Ročník 32; číslo 2; s. 364 - 384 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.04.2011
|
| Témata: | |
| ISSN: | 0895-4798, 1095-7162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A polynomial transform is the multiplication of an input vector x∈Cn by a matrix Pb,α∈Cn×n, whose (k,[cursive l])th element is defined as p[cursive l](αk) for polynomials p[cursive l](x)∈C[x] from a list b={p0(x),...,pn-1(x)} and sample points αk∈C from a list α={α0,...,αn-1}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. An important example includes the discrete Fourier transform. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0895-4798 1095-7162 |
| DOI: | 10.1137/100805777 |