Algebraic Signal Processing Theory: Cooley–Tukey-Type Algorithms for Polynomial Transforms Based on Induction

A polynomial transform is the multiplication of an input vector x∈Cn by a matrix Pb,α∈Cn×n, whose (k,[cursive l])th element is defined as p[cursive l](αk) for polynomials p[cursive l](x)∈C[x] from a list b={p0(x),...,pn-1(x)} and sample points αk∈C from a list α={α0,...,αn-1}. Such transforms find a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on matrix analysis and applications Ročník 32; číslo 2; s. 364 - 384
Hlavní autoři: Sandryhaila, Aliaksei, Kovačević, Jelena, Püschel, Markus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.04.2011
Témata:
ISSN:0895-4798, 1095-7162
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A polynomial transform is the multiplication of an input vector x∈Cn by a matrix Pb,α∈Cn×n, whose (k,[cursive l])th element is defined as p[cursive l](αk) for polynomials p[cursive l](x)∈C[x] from a list b={p0(x),...,pn-1(x)} and sample points αk∈C from a list α={α0,...,αn-1}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. An important example includes the discrete Fourier transform. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0895-4798
1095-7162
DOI:10.1137/100805777