Expected density of complex zeros of random hyperbolic polynomials
There are many known asymptotic estimates for the expected number of real zeros of polynomial H n ( z) = η 1 cosh ζ z + η 2 cosh 2ζ z + ⋯ + η n cosh nζ z, where η j , j = 1, 2, 3, …, n is a sequence of independent random variables. This paper provides the asymptotic formula for the expected density...
Uložené v:
| Vydané v: | Applied mathematics letters Ročník 15; číslo 4; s. 389 - 393 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.05.2002
Elsevier |
| Predmet: | |
| ISSN: | 0893-9659, 1873-5452 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | There are many known asymptotic estimates for the expected number of real zeros of polynomial
H
n
(
z) = η
1 cosh ζ
z + η
2 cosh 2ζ
z + ⋯ + η
n
cosh
nζ
z, where η
j
,
j = 1, 2, 3, …,
n is a sequence of independent random variables. This paper provides the asymptotic formula for the expected density of complex zeros of
H
n
(
z), where η
j
=
a
j
+
ib
j
and
a
j
and
b
j
,
j = 1, 2, 3, …,
n are sequences of independent normally distributed random variables. It is shown that this asymptotic formula for the density of complex zeros remains invariant for other types of polynomials, for instance random trigonometric polynomials, previously studied. |
|---|---|
| ISSN: | 0893-9659 1873-5452 |
| DOI: | 10.1016/S0893-9659(01)00148-3 |