Deep reinforcement learning enables conceptual design of processes for separating azeotropic mixtures without prior knowledge
Process synthesis in chemical engineering is a complex planning problem due to vast search spaces, continuous parameters and the need for generalization. Deep reinforcement learning agents, trained without prior knowledge, have shown to outperform humans in various complex planning problems in recen...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 194; s. 108975 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2025
|
| Témata: | |
| ISSN: | 0098-1354 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Process synthesis in chemical engineering is a complex planning problem due to vast search spaces, continuous parameters and the need for generalization. Deep reinforcement learning agents, trained without prior knowledge, have shown to outperform humans in various complex planning problems in recent years. Existing work on reinforcement learning for flowsheet synthesis shows promising concepts. We further develop those concepts and present a general deep reinforcement learning approach for flowsheet synthesis. We demonstrate the adaptability of an agent to the general task of separating binary azeotropic mixtures. The agent is trained to set up the discrete process topology alongside choosing continuous specifications for the individual flowsheet elements (e.g., distillation columns and recycles). Without prior knowledge, it learns within one training cycle to craft flowsheets for multiple chemical systems, considering different feed compositions and conceptual approaches. The agent discovers autonomously fundamental process engineering paradigms as heteroazeotropic distillation or curved-boundary distillation.
[Display omitted]
•Reinforcement learning based automated process synthesis.•An agent that discovers classical process engineering schemes.•An agent that handles various flowsheet problems without retraining. |
|---|---|
| AbstractList | Process synthesis in chemical engineering is a complex planning problem due to vast search spaces, continuous parameters and the need for generalization. Deep reinforcement learning agents, trained without prior knowledge, have shown to outperform humans in various complex planning problems in recent years. Existing work on reinforcement learning for flowsheet synthesis shows promising concepts. We further develop those concepts and present a general deep reinforcement learning approach for flowsheet synthesis. We demonstrate the adaptability of an agent to the general task of separating binary azeotropic mixtures. The agent is trained to set up the discrete process topology alongside choosing continuous specifications for the individual flowsheet elements (e.g., distillation columns and recycles). Without prior knowledge, it learns within one training cycle to craft flowsheets for multiple chemical systems, considering different feed compositions and conceptual approaches. The agent discovers autonomously fundamental process engineering paradigms as heteroazeotropic distillation or curved-boundary distillation.
[Display omitted]
•Reinforcement learning based automated process synthesis.•An agent that discovers classical process engineering schemes.•An agent that handles various flowsheet problems without retraining. |
| ArticleNumber | 108975 |
| Author | Burger, Jakob Grimm, Dominik G. Göttl, Quirin Pirnay, Jonathan |
| Author_xml | – sequence: 1 givenname: Quirin surname: Göttl fullname: Göttl, Quirin organization: Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Laboratory of Chemical Process Engineering, Uferstraße 53, 94315 Straubing, Germany – sequence: 2 givenname: Jonathan surname: Pirnay fullname: Pirnay, Jonathan organization: Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Petersgasse 18, 94315 Straubing, Germany – sequence: 3 givenname: Jakob surname: Burger fullname: Burger, Jakob email: burger@tum.de organization: Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Laboratory of Chemical Process Engineering, Uferstraße 53, 94315 Straubing, Germany – sequence: 4 givenname: Dominik G. orcidid: 0000-0003-2085-4591 surname: Grimm fullname: Grimm, Dominik G. email: dominik.grimm@hswt.de organization: Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Petersgasse 18, 94315 Straubing, Germany |
| BookMark | eNqNkMtKQzEQhrNQ0KrvEB-gNTnXZCVSr1Bwo-uQzJnTpp4mhyT1Br67KXUhrlwNzMz3M_NNyIHzDgk552zGGW8u1jPwmxFWuEG3nBWsqHJfyLY-IMeMSTHlZV0dkUmMa8byVIhj8nWNONKA1vU-wI5MdEAdnHVLik6bASMF7wDHtNUD7TDapaO-p2PwgDHmcSZpxFEHnXaU_kSfgh8t0I19T9uQV95sWvltypDNyy_Ovw3YLfGUHPZ6iHj2U0_I8-3N0_x-uni8e5hfLaZQiLaeGtlUUpccSlk1GgvTgqwkE03T1IUWom7BiLrsSqP7xnDJDTdtV6LUYGQBojwhcp8LwccYsFf5kI0OH4oztXOn1uqXO7Vzp_buMnv5hwWb8qfepaDt8K-E-T4B84uvFoOKYDEr7WxASKrz9h8p34Lhm8M |
| CitedBy_id | crossref_primary_10_1016_j_cjche_2025_05_014 crossref_primary_10_1016_j_compchemeng_2025_109399 crossref_primary_10_1016_j_compchemeng_2025_109192 |
| Cites_doi | 10.1038/s41592-019-0686-2 10.1016/0098-1354(88)85045-2 10.1016/j.renene.2012.09.055 10.1016/j.cherd.2024.07.045 10.1016/B978-0-323-85159-6.50259-1 10.1007/BF02698263 10.1021/acs.iecr.3c01269 10.1016/j.cep.2022.108885 10.1146/annurev-chembioeng-080615-033546 10.1002/cite.201800091 10.1021/acs.jcim.9b00237 10.1038/s41586-022-05172-4 10.1002/cite.202100083 10.1002/cite.202100086 10.1016/j.ces.2012.08.018 10.1021/acs.iecr.0c04555 10.1038/s41586-023-06004-9 10.1016/j.compchemeng.2003.09.029 10.1016/j.compchemeng.2020.107027 10.1021/acscentsci.7b00492 10.1016/j.fluid.2012.04.002 10.1021/acs.iecr.3c03575 10.1016/j.compchemeng.2017.10.008 10.1021/ie950450d 10.1038/s42256-020-00284-w 10.1021/ef8004064 10.1038/s42256-022-00580-7 10.1016/j.eng.2021.03.019 10.1021/i160039a003 10.1021/acs.iecr.8b03125 10.1016/j.compchemeng.2023.108321 10.1016/S0098-1354(99)00003-4 10.1002/aic.17938 10.1021/acs.iecr.5b01671 10.1016/B978-0-323-88506-5.50034-6 10.1038/nature24270 10.1016/j.compchemeng.2021.107252 10.1016/j.ces.2011.05.049 10.1126/science.aar6404 10.1039/C8SC04228D 10.1016/0098-1354(89)85019-7 10.1002/aic.12677 10.1016/j.compchemeng.2022.108097 10.1002/1521-4125(20020910)25:9<869::AID-CEAT869>3.0.CO;2-9 10.1007/s11705-021-2055-9 10.1016/0098-1354(83)80013-1 10.1016/j.compchemeng.2019.04.028 10.1016/B978-0-443-15274-0.50319-X 10.1002/aic.690440616 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.compchemeng.2024.108975 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compchemeng_2024_108975 S0098135424003934 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAFTH AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c2875-b9649a31c3946ae2b7c9490866652a8857cb853d3baf6b191b1b7d3e9acb92c83 |
| ISSN | 0098-1354 |
| IngestDate | Sat Nov 29 06:56:44 EST 2025 Tue Nov 18 21:08:22 EST 2025 Sat Nov 29 17:08:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Automated process synthesis Conceptual design Process simulation Reinforcement learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2875-b9649a31c3946ae2b7c9490866652a8857cb853d3baf6b191b1b7d3e9acb92c83 |
| ORCID | 0000-0003-2085-4591 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.compchemeng.2024.108975 |
| ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2024_108975 crossref_citationtrail_10_1016_j_compchemeng_2024_108975 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2024_108975 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Danihelka, I., Guez, A., Schrittwieser, J., Silver, D., 2022. Policy improvement by planning with gumbel. In: ICLR. Kunnakorn, Rirksomboon, Siemanond, Aungkavattana, Kuanchertchoo, Chuntanalerg, Hemra, Kulprathipanja, James, Wongkasemjit (b26) 2013; 51 Ryll, Blagov, Hasse (b44) 2012; 84 Venkatasubramanian (b63) 2018; 65 Chen, Li, Chen, Chien (b5) 2015; 54 Stephanopoulos, Reklaitis (b55) 2011; 66 Rooks, Julka, Doherty, Malone (b40) 1998; 44 Biegler, Grossmann, Westerberg (b3) 1997 Mankowitz, Michi, Zhernov, Gelmi, Selvi, Paduraru, Leurent, Iqbal, Lespiau, Ahern, Köppe, Millikin, Gaffney, Elster, Broshear, Gamble, Milan, Tung, Hwang, Cemgil, Barekatain, Li, Mandhane, Hubert, Schrittwieser, Hassabis, Kohli, Riedmiller, Vinyals, Silver (b30) 2023; 618 Bekiaris, Morari (b2) 1996; 35 Seidenberg, Khan, Lapkin (b51) 2023; 169 Gani, O’Connell (b11) 1989; 13 Sargent (b45) 1983; 7 Ryll, Blagov, Hasse (b43) 2012; 324 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, Chen, Lillicrap, Hui, Sifre, Driessche, Graepel, Hassabis (b54) 2017; 550 Van Hasselt, Guez, Hessel, Mnih, Silver (b61) 2016 Mencarelli, Chen, Pagot, Grossmann (b32) 2020; 136 Sasi, Kruber, Ascani, Skiborowski (b46) 2020; vol. 48 He, Hooi, Laurent, Perold, LeCun, Bresson (b20) 2023 Schwaller, Probst, Vaucher, Nair, Kreutter, Laino, Reymond (b49) 2021; 3 Grossmann, Caballero, Yeomans (b18) 1999; 16 Petlyuk (b35) 2004 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b62) 2017 Ross, Belgodere, Chenthamarakshan, Padhi, Mroueh, Das (b41) 2022; 4 Schulman, Wolski, Dhariwal, Radford, Klimov (b48) 2017 Sasi, Skiborowski (b47) 2020; 59 Pohlen, Piot, Hester, Azar, Horgan, Budden, Barth-Maron, Van Hasselt, Quan, Večerík, Hessel, Munos, Pietquin (b38) 2018 Aspen, ., Aspen Plus 8.8, Aspen Technology Inc. Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, Plas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, Mulbregt, SciPy 1.0 Contributors (b64) 2020; 17 Yang, Dong, Grossmann (b69) 2012; 58 Ryll (b42) 2009 Towler, Sinnott (b60) 2022 Lee, Shin, Realff (b27) 2018; 114 Göttl, Grimm, Burger (b13) 2021; 50 Meng, Wang, Bai, Dong, Du (b33) 2024; 63 Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S., Silver, D., 2021. Learning and planning in complex action spaces. In: ICML. Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, Lillicrap, Simonyan, Hassabis (b53) 2018; 362 Stops, Leenhouts, Gao, Schweidtmann (b56) 2023; 69 Pirnay, J., Göttl, Q., Burger, J., Grimm, D., 2023. Policy-Based Self-Competition for Planning Problems. In: International Conference on Learning Representations. Fawzi, Balog, Huang, Hubert, Romera-Paredes, Barekatain, Novikov, Ruiz, Schrittwieser, Swirszcz, Silver, Hassabis, Kohli (b10) 2022; 610 Khan, Lapkin (b23) 2022; 180 Dobbelaere, Plehiers, Van de Vijver, Stevens, Van Geem (b9) 2021; 7 Khan, Lapkin (b22) 2020; 141 DDBST (b8) 2023 Sutton, Barto (b57) 2018 Pistikopoulos, Barbosa-Povoa, Misener, Mitsos, Reklaitis, Venkatasubramanian, You, Gani (b37) 2021; 147 Westerberg (b68) 2004; 28 Krey, Owen (b25) 2007 Wang, Guzman-Urbina, Wu, Ohno, Fukushima (b67) 2024; 209 Midgley (b34) 2020 McBride, Sundmacher (b31) 2019; 91 Taifan, Maravelias (b58) 2023; 62 Luyben (b29) 2008; 22 Coley, Jin, Rogers, Jamison, Jaakkola, Green, Barzilay, Jensen (b6) 2019; 10 Linstrom, Mallard (b28) 2023 Yang, Swanson, Jin, Coley, Eiden, Gao, Guzman-Perez, Hopper, Kelley, Mathea, Palmer, Settels, Jaakkola, Jensen, Barzilay (b70) 2019; 59 Yeomans, Grossmann (b71) 1999; 23 Chen, Grossmann (b4) 2017; 7 Gao, Yang, Shanbhag, Schweidtmann (b12) 2023; 52 Schweidtmann, Esche, Fischer, Kloft, Repke, Sager, Mitsos (b50) 2021; 93 Tolstikhin, Houlsby, Kolesnikov, Beyer, Zhai, Unterthiner, Yung, Steiner, Keysers, Uszkoreit, Lucic, Dosovitskiy (b59) 2021; vol. 34 Prausnitz, Lichtenthaler, Azevedo (b39) 1999 Göttl, Tönges, Grimm, Burger (b17) 2021; 93 Göttl, Grimm, Burger (b14) 2022; 16 Grossmann, Harjunkoski (b19) 2019; 126 Wang, Chien (b66) 2018; 57 Zhou, Li, Zare (b72) 2017; 3 Göttl, Pirnay, Grimm, Burger (b16) 2023; 177 Kirkwood, Locke, Douglas (b24) 1988; 12 Vogelpohl (b65) 2002; 25 Siirola, Rudd (b52) 1971; 10 Göttl, Grimm, Burger (b15) 2022; 49 Schwaller (10.1016/j.compchemeng.2024.108975_b49) 2021; 3 Meng (10.1016/j.compchemeng.2024.108975_b33) 2024; 63 Schulman (10.1016/j.compchemeng.2024.108975_b48) 2017 Petlyuk (10.1016/j.compchemeng.2024.108975_b35) 2004 Göttl (10.1016/j.compchemeng.2024.108975_b13) 2021; 50 Chen (10.1016/j.compchemeng.2024.108975_b5) 2015; 54 Grossmann (10.1016/j.compchemeng.2024.108975_b18) 1999; 16 Stops (10.1016/j.compchemeng.2024.108975_b56) 2023; 69 Wang (10.1016/j.compchemeng.2024.108975_b66) 2018; 57 Yeomans (10.1016/j.compchemeng.2024.108975_b71) 1999; 23 Ryll (10.1016/j.compchemeng.2024.108975_b42) 2009 Chen (10.1016/j.compchemeng.2024.108975_b4) 2017; 7 Ross (10.1016/j.compchemeng.2024.108975_b41) 2022; 4 Westerberg (10.1016/j.compchemeng.2024.108975_b68) 2004; 28 Yang (10.1016/j.compchemeng.2024.108975_b70) 2019; 59 Biegler (10.1016/j.compchemeng.2024.108975_b3) 1997 DDBST (10.1016/j.compchemeng.2024.108975_b8) 2023 Tolstikhin (10.1016/j.compchemeng.2024.108975_b59) 2021; vol. 34 Linstrom (10.1016/j.compchemeng.2024.108975_b28) 2023 Kirkwood (10.1016/j.compchemeng.2024.108975_b24) 1988; 12 Kunnakorn (10.1016/j.compchemeng.2024.108975_b26) 2013; 51 Vaswani (10.1016/j.compchemeng.2024.108975_b62) 2017 Sargent (10.1016/j.compchemeng.2024.108975_b45) 1983; 7 Schweidtmann (10.1016/j.compchemeng.2024.108975_b50) 2021; 93 Van Hasselt (10.1016/j.compchemeng.2024.108975_b61) 2016 Rooks (10.1016/j.compchemeng.2024.108975_b40) 1998; 44 Göttl (10.1016/j.compchemeng.2024.108975_b14) 2022; 16 Luyben (10.1016/j.compchemeng.2024.108975_b29) 2008; 22 Towler (10.1016/j.compchemeng.2024.108975_b60) 2022 Göttl (10.1016/j.compchemeng.2024.108975_b15) 2022; 49 Mencarelli (10.1016/j.compchemeng.2024.108975_b32) 2020; 136 Fawzi (10.1016/j.compchemeng.2024.108975_b10) 2022; 610 Gao (10.1016/j.compchemeng.2024.108975_b12) 2023; 52 Khan (10.1016/j.compchemeng.2024.108975_b23) 2022; 180 Yang (10.1016/j.compchemeng.2024.108975_b69) 2012; 58 Silver (10.1016/j.compchemeng.2024.108975_b54) 2017; 550 Khan (10.1016/j.compchemeng.2024.108975_b22) 2020; 141 Siirola (10.1016/j.compchemeng.2024.108975_b52) 1971; 10 Zhou (10.1016/j.compchemeng.2024.108975_b72) 2017; 3 Ryll (10.1016/j.compchemeng.2024.108975_b43) 2012; 324 10.1016/j.compchemeng.2024.108975_b7 Virtanen (10.1016/j.compchemeng.2024.108975_b64) 2020; 17 Sasi (10.1016/j.compchemeng.2024.108975_b47) 2020; 59 Pistikopoulos (10.1016/j.compchemeng.2024.108975_b37) 2021; 147 10.1016/j.compchemeng.2024.108975_b1 Grossmann (10.1016/j.compchemeng.2024.108975_b19) 2019; 126 Mankowitz (10.1016/j.compchemeng.2024.108975_b30) 2023; 618 Venkatasubramanian (10.1016/j.compchemeng.2024.108975_b63) 2018; 65 10.1016/j.compchemeng.2024.108975_b36 Vogelpohl (10.1016/j.compchemeng.2024.108975_b65) 2002; 25 Wang (10.1016/j.compchemeng.2024.108975_b67) 2024; 209 Bekiaris (10.1016/j.compchemeng.2024.108975_b2) 1996; 35 Seidenberg (10.1016/j.compchemeng.2024.108975_b51) 2023; 169 Ryll (10.1016/j.compchemeng.2024.108975_b44) 2012; 84 Krey (10.1016/j.compchemeng.2024.108975_b25) 2007 Taifan (10.1016/j.compchemeng.2024.108975_b58) 2023; 62 Prausnitz (10.1016/j.compchemeng.2024.108975_b39) 1999 Silver (10.1016/j.compchemeng.2024.108975_b53) 2018; 362 Coley (10.1016/j.compchemeng.2024.108975_b6) 2019; 10 Gani (10.1016/j.compchemeng.2024.108975_b11) 1989; 13 Midgley (10.1016/j.compchemeng.2024.108975_b34) 2020 Sutton (10.1016/j.compchemeng.2024.108975_b57) 2018 Stephanopoulos (10.1016/j.compchemeng.2024.108975_b55) 2011; 66 Göttl (10.1016/j.compchemeng.2024.108975_b16) 2023; 177 He (10.1016/j.compchemeng.2024.108975_b20) 2023 Sasi (10.1016/j.compchemeng.2024.108975_b46) 2020; vol. 48 Göttl (10.1016/j.compchemeng.2024.108975_b17) 2021; 93 Lee (10.1016/j.compchemeng.2024.108975_b27) 2018; 114 McBride (10.1016/j.compchemeng.2024.108975_b31) 2019; 91 10.1016/j.compchemeng.2024.108975_b21 Dobbelaere (10.1016/j.compchemeng.2024.108975_b9) 2021; 7 Pohlen (10.1016/j.compchemeng.2024.108975_b38) 2018 |
| References_xml | – volume: 91 start-page: 1 year: 2019 end-page: 13 ident: b31 article-title: Overview of surrogate modeling in chemical process engineering publication-title: Chem. Ing. Tech. – volume: 362 start-page: 1140 year: 2018 end-page: 1144 ident: b53 article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play publication-title: Science – volume: 59 start-page: 20816 year: 2020 end-page: 20835 ident: b47 article-title: Automatic synthesis of distillation processes for the separation of homogeneous azeotropic multicomponent systems publication-title: Ind. Eng. Chem. Res. – reference: Danihelka, I., Guez, A., Schrittwieser, J., Silver, D., 2022. Policy improvement by planning with gumbel. In: ICLR. – volume: 147 year: 2021 ident: b37 article-title: Process systems engineering - The generation next? publication-title: Comput. Chem. Eng. – volume: 50 start-page: 209 year: 2021 end-page: 214 ident: b13 article-title: Automated process synthesis using reinforcement learning publication-title: Comput. Aided Chem. Eng. – year: 2020 ident: b34 article-title: Deep reinforcement learning for process synthesis – volume: 65 year: 2018 ident: b63 article-title: The promise of artificial intelligence in chemical engineering: Is it here, finally? publication-title: AIChE J. – volume: 16 start-page: 288 year: 2022 end-page: 302 ident: b14 article-title: Automated synthesis of steady-state continuous processes using reinforcement learning publication-title: Front. Chem. Sci. Eng. – year: 2007 ident: b25 article-title: Basic Theoretical Physics – year: 2018 ident: b57 article-title: Reinforcement Learning: An Introduction – volume: 126 start-page: 474 year: 2019 end-page: 484 ident: b19 article-title: Process systems engineering: Academic and industrial perspectives publication-title: Comput. Chem. Eng. – year: 2018 ident: b38 article-title: Observe and look further: Achieving consistent performance on atari – volume: 10 start-page: 370 year: 2019 end-page: 377 ident: b6 article-title: A graph-convolutional neural network model for the prediction of chemical reactivity publication-title: Chem. Sci. – volume: 10 start-page: 353 year: 1971 end-page: 362 ident: b52 article-title: Computer-aided synthesis of chemical process designs. From reaction path data to the process task network publication-title: Ind. Eng. Chem. Fundamen. – volume: 69 start-page: 17938 year: 2023 ident: b56 article-title: Flowsheet generation through hierarchical reinforcement learning and graph neural networks publication-title: AIChE J. – volume: 3 start-page: 1337 year: 2017 end-page: 1344 ident: b72 article-title: Optimizing chemical reactions with deep reinforcement learning publication-title: ACS Cent. Sci. – year: 2004 ident: b35 article-title: Distillation Theory and Its Application to Optimal Design of Separation Units – volume: 136 year: 2020 ident: b32 article-title: A review on superstructure optimization approaches in process system engineering publication-title: Comput. Chem. Eng. – reference: Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S., Silver, D., 2021. Learning and planning in complex action spaces. In: ICML. – volume: 93 start-page: 2029 year: 2021 end-page: 2039 ident: b50 article-title: Machine learning in chemical engineering: A perspective publication-title: Chem. Ing. Tech. – volume: 25 start-page: 869 year: 2002 end-page: 872 ident: b65 article-title: On the relation between ideal and real mixtures in multicomponent distillation publication-title: Chem. Eng. Technol.: Ind. Chem.–Plant Equip.–Process Eng.–Biotechnol. – volume: 114 start-page: 111 year: 2018 end-page: 121 ident: b27 article-title: Machine learning: Overview of the recent progresses and implications for the process systems engineering field publication-title: Comput. Chem. Eng. – year: 2022 ident: b60 article-title: Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design – volume: 7 start-page: 219 year: 1983 end-page: 237 ident: b45 article-title: Advances in modelling and analysis of chemical process systems publication-title: Comput. Chem. Eng. – volume: 13 start-page: 397 year: 1989 end-page: 404 ident: b11 article-title: A knowledge based system for the selection of thermodynamic models publication-title: Comput. Chem. Eng. – volume: 44 start-page: 1382 year: 1998 end-page: 1391 ident: b40 article-title: Structure of distillation regions for multicomponent azeotropic mixtures publication-title: AIChE J. – year: 2009 ident: b42 article-title: Thermodynamische Analyse gekoppelter Reaktions-Destillations-Prozesse: konzeptioneller Entwurf, Modellierung, Simulation und experimentelle Validierung (in German) – volume: 66 start-page: 4272 year: 2011 end-page: 4306 ident: b55 article-title: Process systems engineering: from solvay to modern bio- and nanotechnology. a history of development, successes and prospects for the future publication-title: Chem. Eng. Sci. – volume: 49 start-page: 1555 year: 2022 end-page: 1560 ident: b15 article-title: Using reinforcement learning in a game-like setup for automated process synthesis without prior process knowledge publication-title: Comput. Aided Chem. Eng. – volume: 62 start-page: 12220 year: 2023 end-page: 12234 ident: b58 article-title: Optimization-based azeotropic distillation system synthesis using geometric insights publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 144 year: 2021 end-page: 152 ident: b49 article-title: Mapping the space of chemical reactions using attention-based neural networks publication-title: Nat. Mach. Intell. – volume: 12 start-page: 329 year: 1988 end-page: 343 ident: b24 article-title: A prototype expert system for synthesizing chemical process flowsheets publication-title: Comput. Chem. Eng. – year: 2023 ident: b8 article-title: Dortmund data bank – reference: Pirnay, J., Göttl, Q., Burger, J., Grimm, D., 2023. Policy-Based Self-Competition for Planning Problems. In: International Conference on Learning Representations. – volume: 4 start-page: 1256 year: 2022 end-page: 1264 ident: b41 article-title: Large-scale chemical language representations capture molecular structure and properties publication-title: Nat. Mach. Intell. – volume: 169 year: 2023 ident: b51 article-title: Boosting autonomous process design and intensification with formalized domain knowledge publication-title: Comput. Chem. Eng. – volume: 22 start-page: 4249 year: 2008 end-page: 4258 ident: b29 article-title: Control of the heterogeneous azeotropic n-butanol/water distillation system publication-title: Energy Fuel – volume: 324 start-page: 108 year: 2012 end-page: 116 ident: b43 article-title: Convex envelope method for the determination of fluid phase diagrams publication-title: Fluid Ph. Equilibria – volume: vol. 34 start-page: 24261 year: 2021 end-page: 24272 ident: b59 article-title: MLP-mixer: An all-MLP architecture for vision publication-title: NeurIPS – volume: 28 start-page: 447 year: 2004 end-page: 458 ident: b68 article-title: A retrospective on design and process synthesis publication-title: Comput. Chem. Eng. – volume: 59 start-page: 3370 year: 2019 end-page: 3388 ident: b70 article-title: Analyzing learned molecular representations for property prediction publication-title: J. Chem. Inf. Model. – volume: 57 start-page: 12884 year: 2018 end-page: 12894 ident: b66 article-title: Unique design considerations for maximum-boiling azeotropic systems via extractive distillation: Acetone/chloroform separation publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 1487 year: 2012 end-page: 1502 ident: b69 article-title: A framework for synthesizing the optimal separation process of azeotropic mixtures publication-title: AIChE J. – start-page: 5998 year: 2017 end-page: 6008 ident: b62 article-title: Attention is all you need – volume: 177 year: 2023 ident: b16 article-title: Convex envelope method for determining liquid multi-phase equilibria in systems with arbitrary number of components publication-title: Comput. Chem. Eng. – volume: 141 year: 2020 ident: b22 article-title: Searching for optimal process routes: A reinforcement learning approach publication-title: Comput. Chem. Eng. – year: 2017 ident: b48 article-title: Proximal policy optimization algorithms – year: 2023 ident: b28 article-title: NIST Chemistry WebBook – volume: 550 start-page: 354 year: 2017 end-page: 359 ident: b54 article-title: Mastering the game of go without human knowledge publication-title: Nature – volume: 7 start-page: 1201 year: 2021 end-page: 1211 ident: b9 article-title: Machine learning in chemical engineering: Strengths, weaknesses, opportunities, and threats publication-title: Engineering – volume: 23 start-page: 709 year: 1999 end-page: 731 ident: b71 article-title: A systematic modeling framework of superstructure optimization in process synthesis publication-title: Comput. Chem. Eng. – volume: 52 start-page: 2005 year: 2023 end-page: 2010 ident: b12 article-title: Transfer learning for process design with reinforcement learning publication-title: Comput. Aided Chem. Eng. – volume: 63 start-page: 2294 year: 2024 end-page: 2306 ident: b33 article-title: Automatic design of extractive distillation sequence for a multicomponent azeotropic system publication-title: Ind. Eng. Chem. Res. – year: 1997 ident: b3 article-title: Systematic Methods of Chemical Process Design – start-page: 12724 year: 2023 end-page: 12745 ident: b20 article-title: A generalization of vit/mlp-mixer to graphs publication-title: International Conference on Machine Learning – volume: 84 start-page: 315 year: 2012 end-page: 332 ident: b44 article-title: Inf/inf analysis of homogeneous distillation processes publication-title: Chem. Eng. Sci. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b64 article-title: Scipy 1.0: Fundamental algorithms for scientific computing in python publication-title: Nature Methods – volume: 610 start-page: 47 year: 2022 end-page: 53 ident: b10 article-title: Discovering faster matrix multiplication algorithms with reinforcement learning publication-title: Nature – volume: 35 start-page: 4264 year: 1996 end-page: 4280 ident: b2 article-title: Multiple steady states in distillation: Inf/inf predictions, extensions, and implications for design, synthesis, and simulation publication-title: Ind. Eng. Chem. Res. – year: 1999 ident: b39 article-title: Molecular Thermodynamics of Fluid-Phase Equilibria – volume: 209 start-page: 26 year: 2024 end-page: 36 ident: b67 article-title: Automated hybrid distillation sequence synthesis framework of mixed azeotropes and nonazeotropes publication-title: Chem. Eng. Res. Des. – year: 2016 ident: b61 article-title: Learning values across many orders of magnitude – volume: vol. 48 start-page: 1009 year: 2020 end-page: 1014 ident: b46 article-title: Automatic synthesis of distillation processes for the separation of heterogeneous azeotropic multi-component mixtures publication-title: Computer Aided Chemical Engineering – reference: Aspen, ., Aspen Plus 8.8, Aspen Technology Inc. – volume: 16 start-page: 407 year: 1999 end-page: 426 ident: b18 article-title: Mathematical programming approaches to the synthesis of chemical process systems publication-title: Korean J. Chem. Eng. – volume: 618 start-page: 257 year: 2023 end-page: 263 ident: b30 article-title: Faster sorting algorithms discovered using deep reinforcement learning publication-title: Nature – volume: 7 start-page: 249 year: 2017 end-page: 283 ident: b4 article-title: Recent developments and challenges in optimization-based process synthesis publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 54 start-page: 7715 year: 2015 end-page: 7727 ident: b5 article-title: Design and control of a hybrid extraction/distillation system for the separation of pyridine and water publication-title: Ind. Eng. Chem. – volume: 51 start-page: 310 year: 2013 end-page: 316 ident: b26 article-title: Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation publication-title: Renew. Energy – volume: 180 year: 2022 ident: b23 article-title: Designing the process designer: Hierarchical reinforcement learning for optimisation-based process design publication-title: Chem. Eng. Process. – volume: 93 start-page: 2010 year: 2021 end-page: 2018 ident: b17 article-title: Automated flowsheet synthesis using hierarchical reinforcement learning: Proof of concept publication-title: Chem. Ing. Tech. – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.compchemeng.2024.108975_b64 article-title: Scipy 1.0: Fundamental algorithms for scientific computing in python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume: 12 start-page: 329 issue: 4 year: 1988 ident: 10.1016/j.compchemeng.2024.108975_b24 article-title: A prototype expert system for synthesizing chemical process flowsheets publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(88)85045-2 – volume: 51 start-page: 310 year: 2013 ident: 10.1016/j.compchemeng.2024.108975_b26 article-title: Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation publication-title: Renew. Energy doi: 10.1016/j.renene.2012.09.055 – volume: 209 start-page: 26 year: 2024 ident: 10.1016/j.compchemeng.2024.108975_b67 article-title: Automated hybrid distillation sequence synthesis framework of mixed azeotropes and nonazeotropes publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2024.07.045 – volume: 49 start-page: 1555 year: 2022 ident: 10.1016/j.compchemeng.2024.108975_b15 article-title: Using reinforcement learning in a game-like setup for automated process synthesis without prior process knowledge publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-323-85159-6.50259-1 – volume: 16 start-page: 407 issue: 4 year: 1999 ident: 10.1016/j.compchemeng.2024.108975_b18 article-title: Mathematical programming approaches to the synthesis of chemical process systems publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02698263 – ident: 10.1016/j.compchemeng.2024.108975_b21 – volume: 62 start-page: 12220 issue: 31 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b58 article-title: Optimization-based azeotropic distillation system synthesis using geometric insights publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c01269 – volume: 180 year: 2022 ident: 10.1016/j.compchemeng.2024.108975_b23 article-title: Designing the process designer: Hierarchical reinforcement learning for optimisation-based process design publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2022.108885 – volume: vol. 34 start-page: 24261 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b59 article-title: MLP-mixer: An all-MLP architecture for vision – year: 2022 ident: 10.1016/j.compchemeng.2024.108975_b60 – volume: 7 start-page: 249 issue: 8 year: 2017 ident: 10.1016/j.compchemeng.2024.108975_b4 article-title: Recent developments and challenges in optimization-based process synthesis publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-080615-033546 – volume: 91 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.compchemeng.2024.108975_b31 article-title: Overview of surrogate modeling in chemical process engineering publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201800091 – volume: 59 start-page: 3370 issue: 8 year: 2019 ident: 10.1016/j.compchemeng.2024.108975_b70 article-title: Analyzing learned molecular representations for property prediction publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00237 – volume: 610 start-page: 47 issue: 7930 year: 2022 ident: 10.1016/j.compchemeng.2024.108975_b10 article-title: Discovering faster matrix multiplication algorithms with reinforcement learning publication-title: Nature doi: 10.1038/s41586-022-05172-4 – volume: 93 start-page: 2029 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b50 article-title: Machine learning in chemical engineering: A perspective publication-title: Chem. Ing. Tech. doi: 10.1002/cite.202100083 – volume: 93 start-page: 2010 issue: 12 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b17 article-title: Automated flowsheet synthesis using hierarchical reinforcement learning: Proof of concept publication-title: Chem. Ing. Tech. doi: 10.1002/cite.202100086 – ident: 10.1016/j.compchemeng.2024.108975_b7 – volume: 84 start-page: 315 year: 2012 ident: 10.1016/j.compchemeng.2024.108975_b44 article-title: Inf/inf analysis of homogeneous distillation processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.018 – year: 2018 ident: 10.1016/j.compchemeng.2024.108975_b57 – volume: 59 start-page: 20816 issue: 47 year: 2020 ident: 10.1016/j.compchemeng.2024.108975_b47 article-title: Automatic synthesis of distillation processes for the separation of homogeneous azeotropic multicomponent systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04555 – year: 2016 ident: 10.1016/j.compchemeng.2024.108975_b61 article-title: Learning values across many orders of magnitude – year: 2017 ident: 10.1016/j.compchemeng.2024.108975_b48 – volume: 618 start-page: 257 issue: 7964 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b30 article-title: Faster sorting algorithms discovered using deep reinforcement learning publication-title: Nature doi: 10.1038/s41586-023-06004-9 – volume: 28 start-page: 447 issue: 4 year: 2004 ident: 10.1016/j.compchemeng.2024.108975_b68 article-title: A retrospective on design and process synthesis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.029 – volume: 141 year: 2020 ident: 10.1016/j.compchemeng.2024.108975_b22 article-title: Searching for optimal process routes: A reinforcement learning approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107027 – volume: 3 start-page: 1337 issue: 12 year: 2017 ident: 10.1016/j.compchemeng.2024.108975_b72 article-title: Optimizing chemical reactions with deep reinforcement learning publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00492 – volume: 324 start-page: 108 year: 2012 ident: 10.1016/j.compchemeng.2024.108975_b43 article-title: Convex envelope method for the determination of fluid phase diagrams publication-title: Fluid Ph. Equilibria doi: 10.1016/j.fluid.2012.04.002 – volume: 63 start-page: 2294 issue: 5 year: 2024 ident: 10.1016/j.compchemeng.2024.108975_b33 article-title: Automatic design of extractive distillation sequence for a multicomponent azeotropic system publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c03575 – year: 2020 ident: 10.1016/j.compchemeng.2024.108975_b34 – year: 1999 ident: 10.1016/j.compchemeng.2024.108975_b39 – volume: 114 start-page: 111 year: 2018 ident: 10.1016/j.compchemeng.2024.108975_b27 article-title: Machine learning: Overview of the recent progresses and implications for the process systems engineering field publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.10.008 – volume: 35 start-page: 4264 year: 1996 ident: 10.1016/j.compchemeng.2024.108975_b2 article-title: Multiple steady states in distillation: Inf/inf predictions, extensions, and implications for design, synthesis, and simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950450d – year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b28 – volume: 3 start-page: 144 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b49 article-title: Mapping the space of chemical reactions using attention-based neural networks publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00284-w – volume: 22 start-page: 4249 year: 2008 ident: 10.1016/j.compchemeng.2024.108975_b29 article-title: Control of the heterogeneous azeotropic n-butanol/water distillation system publication-title: Energy Fuel doi: 10.1021/ef8004064 – volume: 4 start-page: 1256 year: 2022 ident: 10.1016/j.compchemeng.2024.108975_b41 article-title: Large-scale chemical language representations capture molecular structure and properties publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00580-7 – volume: 7 start-page: 1201 issue: 9 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b9 article-title: Machine learning in chemical engineering: Strengths, weaknesses, opportunities, and threats publication-title: Engineering doi: 10.1016/j.eng.2021.03.019 – ident: 10.1016/j.compchemeng.2024.108975_b36 – volume: 10 start-page: 353 issue: 3 year: 1971 ident: 10.1016/j.compchemeng.2024.108975_b52 article-title: Computer-aided synthesis of chemical process designs. From reaction path data to the process task network publication-title: Ind. Eng. Chem. Fundamen. doi: 10.1021/i160039a003 – volume: 57 start-page: 12884 issue: 38 year: 2018 ident: 10.1016/j.compchemeng.2024.108975_b66 article-title: Unique design considerations for maximum-boiling azeotropic systems via extractive distillation: Acetone/chloroform separation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b03125 – volume: 136 issue: 106808 year: 2020 ident: 10.1016/j.compchemeng.2024.108975_b32 article-title: A review on superstructure optimization approaches in process system engineering publication-title: Comput. Chem. Eng. – volume: 177 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b16 article-title: Convex envelope method for determining liquid multi-phase equilibria in systems with arbitrary number of components publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108321 – volume: 23 start-page: 709 issue: 6 year: 1999 ident: 10.1016/j.compchemeng.2024.108975_b71 article-title: A systematic modeling framework of superstructure optimization in process synthesis publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(99)00003-4 – volume: 69 start-page: 17938 issue: 1 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b56 article-title: Flowsheet generation through hierarchical reinforcement learning and graph neural networks publication-title: AIChE J. doi: 10.1002/aic.17938 – volume: 54 start-page: 7715 year: 2015 ident: 10.1016/j.compchemeng.2024.108975_b5 article-title: Design and control of a hybrid extraction/distillation system for the separation of pyridine and water publication-title: Ind. Eng. Chem. doi: 10.1021/acs.iecr.5b01671 – year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b8 – volume: 50 start-page: 209 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b13 article-title: Automated process synthesis using reinforcement learning publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-323-88506-5.50034-6 – volume: 550 start-page: 354 year: 2017 ident: 10.1016/j.compchemeng.2024.108975_b54 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – year: 1997 ident: 10.1016/j.compchemeng.2024.108975_b3 – volume: vol. 48 start-page: 1009 year: 2020 ident: 10.1016/j.compchemeng.2024.108975_b46 article-title: Automatic synthesis of distillation processes for the separation of heterogeneous azeotropic multi-component mixtures – start-page: 12724 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b20 article-title: A generalization of vit/mlp-mixer to graphs – volume: 147 year: 2021 ident: 10.1016/j.compchemeng.2024.108975_b37 article-title: Process systems engineering - The generation next? publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107252 – year: 2018 ident: 10.1016/j.compchemeng.2024.108975_b38 – year: 2009 ident: 10.1016/j.compchemeng.2024.108975_b42 – volume: 66 start-page: 4272 issue: 19 year: 2011 ident: 10.1016/j.compchemeng.2024.108975_b55 article-title: Process systems engineering: from solvay to modern bio- and nanotechnology. a history of development, successes and prospects for the future publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.05.049 – volume: 362 start-page: 1140 year: 2018 ident: 10.1016/j.compchemeng.2024.108975_b53 article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play publication-title: Science doi: 10.1126/science.aar6404 – year: 2007 ident: 10.1016/j.compchemeng.2024.108975_b25 – ident: 10.1016/j.compchemeng.2024.108975_b1 – volume: 10 start-page: 370 year: 2019 ident: 10.1016/j.compchemeng.2024.108975_b6 article-title: A graph-convolutional neural network model for the prediction of chemical reactivity publication-title: Chem. Sci. doi: 10.1039/C8SC04228D – volume: 13 start-page: 397 issue: 4–5 year: 1989 ident: 10.1016/j.compchemeng.2024.108975_b11 article-title: A knowledge based system for the selection of thermodynamic models publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(89)85019-7 – volume: 65 year: 2018 ident: 10.1016/j.compchemeng.2024.108975_b63 article-title: The promise of artificial intelligence in chemical engineering: Is it here, finally? publication-title: AIChE J. – volume: 58 start-page: 1487 issue: 5 year: 2012 ident: 10.1016/j.compchemeng.2024.108975_b69 article-title: A framework for synthesizing the optimal separation process of azeotropic mixtures publication-title: AIChE J. doi: 10.1002/aic.12677 – volume: 169 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b51 article-title: Boosting autonomous process design and intensification with formalized domain knowledge publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.108097 – volume: 25 start-page: 869 issue: 9 year: 2002 ident: 10.1016/j.compchemeng.2024.108975_b65 article-title: On the relation between ideal and real mixtures in multicomponent distillation publication-title: Chem. Eng. Technol.: Ind. Chem.–Plant Equip.–Process Eng.–Biotechnol. doi: 10.1002/1521-4125(20020910)25:9<869::AID-CEAT869>3.0.CO;2-9 – volume: 16 start-page: 288 year: 2022 ident: 10.1016/j.compchemeng.2024.108975_b14 article-title: Automated synthesis of steady-state continuous processes using reinforcement learning publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-021-2055-9 – year: 2004 ident: 10.1016/j.compchemeng.2024.108975_b35 – volume: 7 start-page: 219 year: 1983 ident: 10.1016/j.compchemeng.2024.108975_b45 article-title: Advances in modelling and analysis of chemical process systems publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(83)80013-1 – volume: 126 start-page: 474 year: 2019 ident: 10.1016/j.compchemeng.2024.108975_b19 article-title: Process systems engineering: Academic and industrial perspectives publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.04.028 – volume: 52 start-page: 2005 year: 2023 ident: 10.1016/j.compchemeng.2024.108975_b12 article-title: Transfer learning for process design with reinforcement learning publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-443-15274-0.50319-X – volume: 44 start-page: 1382 issue: 6 year: 1998 ident: 10.1016/j.compchemeng.2024.108975_b40 article-title: Structure of distillation regions for multicomponent azeotropic mixtures publication-title: AIChE J. doi: 10.1002/aic.690440616 – start-page: 5998 year: 2017 ident: 10.1016/j.compchemeng.2024.108975_b62 article-title: Attention is all you need |
| SSID | ssj0002488 |
| Score | 2.4493165 |
| Snippet | Process synthesis in chemical engineering is a complex planning problem due to vast search spaces, continuous parameters and the need for generalization. Deep... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108975 |
| SubjectTerms | Automated process synthesis Conceptual design Process simulation Reinforcement learning |
| Title | Deep reinforcement learning enables conceptual design of processes for separating azeotropic mixtures without prior knowledge |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2024.108975 |
| Volume | 194 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002488 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiE4IJ6ivGQkblGqJk42tsSlQHkdqiKKtLcodpwqbTeJsmm1IPFH-LXM2HESXqIIcYlW0Y4j73zreMbffEPIU11AZKxV5PM4i_1IhcqXheJ-EYSF2smKIs53TLOJZH-fLxbiYDb76mphzk-TquLrtWj-q6vhHjgbS2f_wt3DoHADPoPT4Qpuh-uFHP9S68ZrtVFEVSb551pDHHnaVEqtkGuOdBYsHckNhcMQn23NgDYKDd5KW1VwrGH8rOuurZtSectyjUcOtiYOKc1NW8KXh8zcdK_rGkasDLyUUybQowLiQP7B4_rn864z-ej3Z2VbDpg9KGHKn6aJ_iGDYCq6LdX3pJYjk6hcLm1sgLopJ97r7WlqI4xHbpfNt7mam5HgZNZwAXEvs9LTwxpuOyX_9D6wqYljdGeD84QpbsOTIqRWCtuy5Qe57Q84Pg6P5FomWHSJbIZJLGDF3Nx9u7d4N7znw4hzp8iKBlfIk5E9-JsH_nr3M9nRHN4g1_tQhO5aCN0kM13dItcmApW3yRcEE_0OTNSBifZgoiOYqAUTrQs6gImCJR3BREcwUQcm2oOJGjDRAUx3yMdXe4cv3vh9ww5fQeAd-1LMI5GxQDERzTMdykQJPFiGEDkOM87jREnYHuZMZsVcBiKQgUxypkWmpAgVZ3fJRlVX-h6hImZSCs5ZISUWb0OYIVmuk1xhxJDFW4S7HzJVvZo9NlU5TR1t8Tid-CBFH6TWB1skHEwbK-lyEaNnzltpvze1e84UoPZn8_v_Zv6AXB3_Hw_JRtee6UfksjrvylX7uAfmN36Iw9g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning+enables+conceptual+design+of+processes+for+separating+azeotropic+mixtures+without+prior+knowledge&rft.jtitle=Computers+%26+chemical+engineering&rft.au=G%C3%B6ttl%2C+Quirin&rft.au=Pirnay%2C+Jonathan&rft.au=Burger%2C+Jakob&rft.au=Grimm%2C+Dominik+G.&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=194&rft_id=info:doi/10.1016%2Fj.compchemeng.2024.108975&rft.externalDocID=S0098135424003934 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |