Göttl, Q., Pirnay, J., Burger, J., & Grimm, D. G. (2025). Deep reinforcement learning enables conceptual design of processes for separating azeotropic mixtures without prior knowledge. Computers & chemical engineering, 194, 108975. https://doi.org/10.1016/j.compchemeng.2024.108975
Chicago Style (17th ed.) CitationGöttl, Quirin, Jonathan Pirnay, Jakob Burger, and Dominik G. Grimm. "Deep Reinforcement Learning Enables Conceptual Design of Processes for Separating Azeotropic Mixtures Without Prior Knowledge." Computers & Chemical Engineering 194 (2025): 108975. https://doi.org/10.1016/j.compchemeng.2024.108975.
MLA (9th ed.) CitationGöttl, Quirin, et al. "Deep Reinforcement Learning Enables Conceptual Design of Processes for Separating Azeotropic Mixtures Without Prior Knowledge." Computers & Chemical Engineering, vol. 194, 2025, p. 108975, https://doi.org/10.1016/j.compchemeng.2024.108975.