Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit

As a popular research topic in the area of distributed artificial intelligence, the multi-robot pursuit problem is widely used as a testbed for evaluating coordinated and cooperative strategies in multi-robot systems. This study the problem of multi-robot pursuit game using reinforcement learning (R...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering (Stevenage, England) Vol. 2020; no. 13; pp. 499 - 504
Main Authors: Yu, Chao, Dong, Yinzhao, Li, Yangning, Chen, Yatong
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.07.2020
Subjects:
ISSN:2051-3305, 2051-3305
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a popular research topic in the area of distributed artificial intelligence, the multi-robot pursuit problem is widely used as a testbed for evaluating coordinated and cooperative strategies in multi-robot systems. This study the problem of multi-robot pursuit game using reinforcement learning (RL) techniques is studied. Unlike most existing studies that apply fully centralised deep RL methods based on the centralised-learning and decentralised-execution scheme, the authors propose a fully decentralised multi-agent deep RL approach by modelling each agent as an individual deep RL agent that has its own individual learning system (i.e. individual action-value function, individual leaning update process, and individual action output). To realise coordination among agents, the limited information of other environmental agents is used as input of the learning process. Experimental results show that both distributed and centralised approaches can ultimately solve the pursuit-evasion problem in different dimensions, but the learning efficiency and coordination performance of the proposed distributed approach are much better than the traditional centralised approach.
AbstractList As a popular research topic in the area of distributed artificial intelligence, the multi‐robot pursuit problem is widely used as a testbed for evaluating coordinated and cooperative strategies in multi‐robot systems. This study the problem of multi‐robot pursuit game using reinforcement learning (RL) techniques is studied. Unlike most existing studies that apply fully centralised deep RL methods based on the centralised‐learning and decentralised‐execution scheme, the authors propose a fully decentralised multi‐agent deep RL approach by modelling each agent as an individual deep RL agent that has its own individual learning system (i.e. individual action‐value function, individual leaning update process, and individual action output). To realise coordination among agents, the limited information of other environmental agents is used as input of the learning process. Experimental results show that both distributed and centralised approaches can ultimately solve the pursuit‐evasion problem in different dimensions, but the learning efficiency and coordination performance of the proposed distributed approach are much better than the traditional centralised approach.
Author Chen, Yatong
Yu, Chao
Li, Yangning
Dong, Yinzhao
Author_xml – sequence: 1
  givenname: Chao
  surname: Yu
  fullname: Yu, Chao
  email: cy496@dlut.edu.cn
  organization: 1School of Data and Computer Science, Sun Yat-Sen University, 510006, Guangzhou, People's Republic of China
– sequence: 2
  givenname: Yinzhao
  surname: Dong
  fullname: Dong, Yinzhao
  organization: 2School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
– sequence: 3
  givenname: Yangning
  surname: Li
  fullname: Li, Yangning
  organization: 2School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
– sequence: 4
  givenname: Yatong
  surname: Chen
  fullname: Chen, Yatong
  organization: 2School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
BookMark eNp9kD1PwzAQhi1UJErpyJ6VIeVsN3EyQmn5UCWWIsbIcS6Vq9SObAfUf0-idkBIZbrT6X3uTs81GRlrkJBbCjMK8_x-Z3HGgOYzygAuyJhBQmPOIRn96q_I1PsdAFA-ZzCnY_L5pH1wuuwCVtG-a4KO5RZNiCrENnKoTW2dwv0walA6o8026keRsrZFJ4P-whPnbGlD1HbOdzrckMtaNh6npzohH6vlZvESr9-fXxcP61ixTEDMyiRFJVIQXFHEnNWcK8XLpEylYLUCLpSASuaYKSHTpMqEwjQDIUXGKUM-Ify4VznrvcO6UDr0X1kTnNRNQaEY9BS9nmLQUwx6eir-Q7VO76U7nM2nx_y3bvDwf7jYvC3Z4wo4sAG8O4IaQx_rnOllnDnyAySaiE0
CitedBy_id crossref_primary_10_1016_j_eswa_2024_126029
crossref_primary_10_1109_TCYB_2021_3080044
crossref_primary_10_3390_s23073625
crossref_primary_10_1109_TNNLS_2021_3124466
crossref_primary_10_1016_j_actaastro_2022_05_057
crossref_primary_10_1109_TASE_2024_3420094
crossref_primary_10_1109_TCDS_2025_3540071
crossref_primary_10_1109_TRO_2023_3263459
crossref_primary_10_1016_j_ifacol_2023_10_1100
crossref_primary_10_1109_LCSYS_2021_3070850
crossref_primary_10_1109_COMST_2021_3086014
crossref_primary_10_3389_fpls_2022_898183
crossref_primary_10_1109_LRA_2022_3188904
Cites_doi 10.1038/nature16961
10.1609/aaai.v30i1.10295
10.1007/BF00992698
10.1109/TRA.2002.804040
10.1109/TNNLS.2015.2403394
10.1177/0278364910369949
10.1109/JPROC.2006.887293
10.1109/TITS.2019.2893683
10.1109/FUZZ-IEEE.2016.7737744
10.1609/aaai.v32i1.11371
10.1109/TCYB.2014.2387277
10.1016/B978-1-55860-307-3.50049-6
10.1016/j.mcm.2009.06.011
10.1109/TCYB.2014.2306919
10.1109/TSMCC.2012.2218595
10.1038/nature14236
10.1109/TSMCC.2007.913919
ContentType Journal Article
Copyright 2021 The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Institution of Engineering and Technology
DBID IDLOA
24P
AAYXX
CITATION
DOI 10.1049/joe.2019.1200
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage 504
ExternalDocumentID 10_1049_joe_2019_1200
TJE2BF03020
Genre article
GrantInformation_xml – fundername: Ministry of Military Equipment Development of China
  funderid: 61403120203
– fundername: Dalian High‐Level Talent Innovation Support Program
  funderid: 2017RQ008
– fundername: Dalian Science and Technology Innovation Fund
  funderid: 2018J12GX046
– fundername: Joint Key Program of National Natural Science Foundation of China and Liaoning Province
  funderid: U1808206
GroupedDBID 24P
5VS
AAJGR
ADACO
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
GROUPED_DOAJ
IDLOA
KQ8
OCL
OK1
RIE
RIG
RNS
RUI
0R~
1OC
AAHJG
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
AFKRA
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
HCIFZ
IAO
IGS
IPNFZ
ITC
M43
M7S
M~E
PIMPY
PTHSS
ROL
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c2870-2b56ec76073c1ee92f33cc3b5b6a72fc037c70da9e8c7a65d87ce6807a78312e3
IEDL.DBID 24P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565270600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2051-3305
IngestDate Wed Oct 29 21:32:51 EDT 2025
Tue Nov 18 20:59:19 EST 2025
Wed Jan 22 16:30:42 EST 2025
Tue Jan 05 21:44:04 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords pursuit-evasion problem
multi-agent systems
individual leaning update process
distributed control
game theory
multirobot pursuit game
deep RL methods
multi-robot systems
decentralised-execution scheme
distributed artificial intelligence
learning systems
environmental agents
individual action output
distributed multiagent deep reinforcement learning
multiagent deep RL approach
learning (artificial intelligence)
control engineering computing
multirobot systems
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2870-2b56ec76073c1ee92f33cc3b5b6a72fc037c70da9e8c7a65d87ce6807a78312e3
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2019.1200
PageCount 6
ParticipantIDs crossref_primary_10_1049_joe_2019_1200
crossref_citationtrail_10_1049_joe_2019_1200
iet_journals_10_1049_joe_2019_1200
wiley_primary_10_1049_joe_2019_1200_TJE2BF03020
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate 20200700
July 2020
2020-07-00
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Su, Z.B.; Lu, J.L.; Tong, L. (C19) 2004; 5
Hollinger, G.; Singh, S.; Kehagias, A. (C17) 2010; 29
Yu, C.; Zhang, M.; Ren, F. (C23) 2014; 44
Silver, D.; Huang, A.; Maddison, C.J. (C3) 2015; 529
Busoniu, L.; Babuska, R.; De Schutter, B. (C5) 2008; 38
Mnih, V.; Kavukcuoglu, K.; Silver, D. (C6) 2015; 518
Kehagias, A.; Hollinger, G.; Singh, S. (C16) 2009; 50
Yu, C.; Wang, X.; Xu, X. (C20) 2020; 21
Grondman, I.; Busoniu, L.; Lopes, G.A. (C30) 2012; 42
Vidal, R.; Shakernia, O.; Kim, H.J. (C14) 2002; 18
Yu, C.; Zhang, M.; Ren, F. (C21) 2015; 26
Olfati-Saber, R.; Fax, J.A; Murray, R.M. (C4) 2007; 95
Yu, C.; Zhang, M.; Ren, F. (C22) 2015; 45
Isaacs, R.; Philip, R. (C12) 1966; 17
Watkins Christopher, J.C.H.; Dayan, P. (C25) 1992; 8
2015; 45
2015; 26
1992; 8
1966; 17
2002; 18
2009; 50
2010; 29
2008; 38
1976
2018
2015; 529
2015; 518
2017
2004; 5
2016
2015
1993
2007; 95
2020; 21
2014; 44
2012; 42
e_1_2_8_28_1
e_1_2_8_29_1
Parsons D.T. (e_1_2_8_14_1) 1976
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Su Z.B. (e_1_2_8_20_1) 2004; 5
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Isaacs R. (e_1_2_8_13_1) 1966; 17
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
Sutton R.S. (e_1_2_8_2_1) 2018
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 18
  start-page: 662
  issue: 5
  year: 2002
  end-page: 669
  ident: C14
  article-title: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation
  publication-title: IEEE Trans. Robotics Autom.
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  end-page: 292
  ident: C25
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 50
  start-page: 1305
  issue: 9
  year: 2009
  end-page: 1317
  ident: C16
  article-title: A graph search algorithm for indoor pursuit/evasion
  publication-title: Math. Comput. Model.
– volume: 45
  start-page: 2853
  issue: 12
  year: 2015
  end-page: 2867
  ident: C22
  article-title: Multiagent learning of coordination in loosely coupled multiagent systems
  publication-title: IEEE Trans. Cybern.
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: C6
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 44
  start-page: 2342
  issue: 12
  year: 2014
  end-page: 2355
  ident: C23
  article-title: Collective learning for the emergence of social norms in networked multiagent systems
  publication-title: IEEE Trans. Cybern.
– volume: 95
  start-page: 215
  issue: 1
  year: 2007
  end-page: 233
  ident: C4
  article-title: Consensus and cooperation in networked multi-agent systems
  publication-title: Proc. IEEE
– volume: 42
  start-page: 1291
  issue: 6
  year: 2012
  end-page: 1307
  ident: C30
  article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients
  publication-title: IEEE Trans. Syst. Man Cybern., C
– volume: 529
  start-page: 484
  issue: 7587
  year: 2015
  end-page: 489
  ident: C3
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– volume: 5
  start-page: 403
  issue: 8
  year: 2004
  end-page: 406
  ident: C19
  article-title: Strategy of cooperative hunting by multiple Mobile robots
  publication-title: J. Beijing Inst. Technol.
– volume: 17
  start-page: 60
  issue: 2
  year: 1966
  end-page: 60
  ident: C12
  article-title: Differential games: a mathematical theory with applications to warfare and pursuit
  publication-title: Control Opt.
– volume: 38
  start-page: 156
  issue: 2
  year: 2008
  end-page: 172
  ident: C5
  article-title: A comprehensive survey of multiagent reinforcement learning
  publication-title: IEEE Trans. Syst. Man Cybern.-C, Appl. Rev.
– volume: 26
  start-page: 3083
  issue: 12
  year: 2015
  end-page: 3096
  ident: C21
  article-title: Emotional multiagent reinforcement learning in spatial social dilemmas
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 21
  start-page: 735
  issue: 2
  year: 2020
  end-page: 748
  ident: C20
  article-title: Distributed multiagent coordinated learning for autonomous driving in highways based on dynamic coordination graphs
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 29
  start-page: 1088
  issue: 8
  year: 2010
  end-page: 1105
  ident: C17
  article-title: Improving the efficiency of clearing with multi-agent teams
  publication-title: Int. J. Robotics Res.
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  article-title: Human‐level control through deep reinforcement learning
  publication-title: Nature
– start-page: 2085
  year: 2017
  end-page: 2087
  article-title: Value‐decomposition networks for cooperative multi‐agent learning
– start-page: 426
  year: 1976
  end-page: 441
– start-page: 330
  year: 1993
  end-page: 337
  article-title: Multi‐agent reinforcement learning: independent vs. Cooperative agents
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  end-page: 292
  article-title: Q‐learning
  publication-title: Mach. Learn.
– start-page: 1995
  year: 2016
  end-page: 2003
  article-title: Dueling network architectures for deep reinforcement learning
– volume: 95
  start-page: 215
  issue: 1
  year: 2007
  end-page: 233
  article-title: Consensus and cooperation in networked multi‐agent systems
  publication-title: Proc. IEEE
– start-page: 618
  year: 2016
  end-page: 625
  article-title: Game of drones: UAV pursuit‐evasion game with type‐2 fuzzy logic controllers tuned by reinforcement learning
– volume: 21
  start-page: 735
  issue: 2
  year: 2020
  end-page: 748
  article-title: Distributed multiagent coordinated learning for autonomous driving in highways based on dynamic coordination graphs
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 18
  start-page: 662
  issue: 5
  year: 2002
  end-page: 669
  article-title: Probabilistic pursuit‐evasion games: theory, implementation, and experimental evaluation
  publication-title: IEEE Trans. Robotics Autom.
– volume: 26
  start-page: 3083
  issue: 12
  year: 2015
  end-page: 3096
  article-title: Emotional multiagent reinforcement learning in spatial social dilemmas
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 464
  year: 2017
  end-page: 473
  article-title: Multi‐agent reinforcement learning in sequential social dilemmas
– volume: 42
  start-page: 1291
  issue: 6
  year: 2012
  end-page: 1307
  article-title: A survey of actor‐critic reinforcement learning: standard and natural policy gradients
  publication-title: IEEE Trans. Syst. Man Cybern., C
– year: 2018
– volume: 529
  start-page: 484
  issue: 7587
  year: 2015
  end-page: 489
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– volume: 45
  start-page: 2853
  issue: 12
  year: 2015
  end-page: 2867
  article-title: Multiagent learning of coordination in loosely coupled multiagent systems
  publication-title: IEEE Trans. Cybern.
– volume: 5
  start-page: 403
  issue: 8
  year: 2004
  end-page: 406
  article-title: Strategy of cooperative hunting by multiple Mobile robots
  publication-title: J. Beijing Inst. Technol.
– volume: 17
  start-page: 60
  issue: 2
  year: 1966
  end-page: 60
  article-title: Differential games: a mathematical theory with applications to warfare and pursuit
  publication-title: Control Opt.
– year: 2018
  article-title: MAgent: a many‐agent reinforcement learning platform for artificial collective intelligence
– start-page: 6379
  year: 2017
  end-page: 6390
  article-title: Multi‐agent actor‐critic for mixed cooperative‐competitive environments
– volume: 38
  start-page: 156
  issue: 2
  year: 2008
  end-page: 172
  article-title: A comprehensive survey of multiagent reinforcement learning
  publication-title: IEEE Trans. Syst. Man Cybern.‐C, Appl. Rev.
– start-page: 1889
  year: 2015
  end-page: 1897
  article-title: Trust region policy optimization
– volume: 50
  start-page: 1305
  issue: 9
  year: 2009
  end-page: 1317
  article-title: A graph search algorithm for indoor pursuit/evasion
  publication-title: Math. Comput. Model.
– year: 2016
  article-title: Collaboration in Ad hoc teamwork: ambiguous tasks, roles, and communication
– year: 2015
  article-title: Deep recurrent Q‐learning for partially observable MDPs
– year: 2017
– volume: 29
  start-page: 1088
  issue: 8
  year: 2010
  end-page: 1105
  article-title: Improving the efficiency of clearing with multi‐agent teams
  publication-title: Int. J. Robotics Res.
– volume: 44
  start-page: 2342
  issue: 12
  year: 2014
  end-page: 2355
  article-title: Collective learning for the emergence of social norms in networked multiagent systems
  publication-title: IEEE Trans. Cybern.
– year: 2015
  article-title: Deep reinforcement learning with double Q‐learning
– ident: e_1_2_8_4_1
  doi: 10.1038/nature16961
– ident: e_1_2_8_27_1
  doi: 10.1609/aaai.v30i1.10295
– ident: e_1_2_8_11_1
– ident: e_1_2_8_26_1
  doi: 10.1007/BF00992698
– ident: e_1_2_8_15_1
  doi: 10.1109/TRA.2002.804040
– ident: e_1_2_8_3_1
– ident: e_1_2_8_22_1
  doi: 10.1109/TNNLS.2015.2403394
– ident: e_1_2_8_28_1
– ident: e_1_2_8_18_1
  doi: 10.1177/0278364910369949
– volume-title: Reinforcement learning: an Introduction
  year: 2018
  ident: e_1_2_8_2_1
– ident: e_1_2_8_5_1
  doi: 10.1109/JPROC.2006.887293
– ident: e_1_2_8_10_1
– start-page: 426
  volume-title: Theory and Applications of Graphs. Lecture Notes in Mathematics
  year: 1976
  ident: e_1_2_8_14_1
– ident: e_1_2_8_21_1
  doi: 10.1109/TITS.2019.2893683
– ident: e_1_2_8_16_1
  doi: 10.1109/FUZZ-IEEE.2016.7737744
– ident: e_1_2_8_30_1
  doi: 10.1609/aaai.v32i1.11371
– ident: e_1_2_8_23_1
  doi: 10.1109/TCYB.2014.2387277
– ident: e_1_2_8_19_1
– ident: e_1_2_8_25_1
  doi: 10.1016/B978-1-55860-307-3.50049-6
– ident: e_1_2_8_17_1
  doi: 10.1016/j.mcm.2009.06.011
– ident: e_1_2_8_24_1
  doi: 10.1109/TCYB.2014.2306919
– ident: e_1_2_8_8_1
– ident: e_1_2_8_31_1
  doi: 10.1109/TSMCC.2012.2218595
– ident: e_1_2_8_7_1
  doi: 10.1038/nature14236
– volume: 17
  start-page: 60
  issue: 2
  year: 1966
  ident: e_1_2_8_13_1
  article-title: Differential games: a mathematical theory with applications to warfare and pursuit
  publication-title: Control Opt.
– volume: 5
  start-page: 403
  issue: 8
  year: 2004
  ident: e_1_2_8_20_1
  article-title: Strategy of cooperative hunting by multiple Mobile robots
  publication-title: J. Beijing Inst. Technol.
– ident: e_1_2_8_12_1
– ident: e_1_2_8_9_1
– ident: e_1_2_8_29_1
– ident: e_1_2_8_6_1
  doi: 10.1109/TSMCC.2007.913919
SSID ssj0001342041
Score 2.3224165
Snippet As a popular research topic in the area of distributed artificial intelligence, the multi-robot pursuit problem is widely used as a testbed for evaluating...
As a popular research topic in the area of distributed artificial intelligence, the multi‐robot pursuit problem is widely used as a testbed for evaluating...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 499
SubjectTerms control engineering computing
decentralised‐execution scheme
deep RL methods
distributed artificial intelligence
distributed control
distributed multiagent deep reinforcement learning
environmental agents
game theory
individual action output
individual leaning update process
learning (artificial intelligence)
learning systems
multiagent deep RL approach
multirobot pursuit game
multirobot systems
multi‐agent systems
multi‐robot systems
pursuit‐evasion problem
The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)
Title Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit
URI http://digital-library.theiet.org/content/journals/10.1049/joe.2019.1200
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2019.1200
Volume 2020
WOSCitedRecordID wos000565270600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Free Archive
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZoYYCBf0T5qSyEmAgkthMnI4JWgKDqUKASQ-Q4F1QJNVGaMiIegWfkSbCdUOhQJMTiIbKt6Hxn-85334fQoY7kR8RU4wTCYoKCFTCHWS4jceBLwaSpcr2_4Z2O3-8H3YrnVNfClPgQk4CbtgyzX2sDF1HJQqIutdrIU41y6QQnjlroGpp3HMq1WhPW_Q6yUEZsw15JlPJZynd3K5xNNcfp1AxT51JtAMX0bdUcN-2Vf__oKlqubpr4rFSNNTQHw3W09AN_cAM9XmjYXM14BTE2qYUfb-9CF1vhGCDDORhcVWlCiLgimHjC6hOWaZpBiRo-GZmnUVrgbJyPxoNiE921W73zS6tiW7Ckfuy0SOR6ILmnbF46AAFJKJWSRm7kCU4SaVMuuR2LAHzJhefGPpfg-TYX3KcOAbqF6sN0CNsIJy6A8qs8BnHCgLiRsu3Y04musYx8mjTQ8ZesQ1lBkWtGjOfQPImzIFQyC7XMQi2zBjqadM9KDI5ZHQ_UwoWVFY5mdTo1q_X7VGHvukVMdjyxd_48YhctEu2Xm7TePVQv8jHsowX5UgxGedPoaNN4_6q9fW2p9uGq8wlmt-tM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7YQAIOvBHjGSHEibI2SZv2iGATjzHtMNAkDlWbumgIrVXXceYn8Bv5JSRpGdthSIhr5ViVY8exY39G6ERl8kOiu3G8wGABBcNjFjNsRiLPFQETusv1scXbbbfX8zoTXfwFPsQ44aYsQ5_XysBVQroIOJkCyXxJFMyl5Z1bcqcraJ5JT6NmGBDW-cmyUEZMPb6SSO0zZPBul0Cbkkd9isOUY6r0IZ--rmp_01z9_5-uoZXyrokvCuVYR3Mw2EDLEwiEm-jpSgHnqplXEGFdXPj5_hGodiscAaQ4A42sKnQSEZcjJp6x_IRFkqRQ4IaPV2ZJmOQ4HWXDUT_fQg_NRvfy2ijnLRhCPXcaJLQdENyRVi8sAI_ElApBQzt0Ak5iYVIuuBkFHriCB44duVyA45o84C61CNBtVB0kA9hBOLYBZGTlMIhiBsQOpXVHjip1jUTo0riGzr6F7YsSjFzNxHj19aM483wpM1_JzFcyq6HTMXlaoHDMIjyWO-eXdjicRVTX2_U7K7972yC6Pp6Yu39ecYQWr7v3Lb91077bQ0tERem6yHcfVfNsBAdoQbzl_WF2qBX2C8PA6_k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojxjBDiRFmbpE17RGwTj2naAdAkDlWbuGgIrVXXceYn8Bv5JSRpGewAEuJaOVblRxI79meEjnUmPyamGyeILBZRsALmMMtlRAa-iJgwXa73Hd7t-v1-0PvWxV_iQ0wSbtozzH6tHRwymZQBJ9MgmU-phrl0gjNHaXoWzTFX7bMa25n1vrIslBHbjK8kyvosFby7FdCm4tGY4jB1MM0OoJi-rprzpr3y_z9dRcvVXROfl8axhmZguI6WviEQbqCHpgbO1TOvQGJTXPj--hbpdissATKcg0FWFSaJiKsRE49YfcIiTTMoccMnK_M0TgucjfPReFBsort26_bi0qrmLVhCP3daJHY9ENxTXi8cgIAklApBYzf2Ik4SYVMuuC2jAHzBI8-VPhfg-TaPuE8dAnQL1YbpELYRTlwAFVl5DGTCgLix8m7p6VJXKWKfJnV0-insUFRg5HomxnNoHsVZECqZhVpmoZZZHZ1MyLMSheMnwiOlubDyw9FPRA2jrt9ZhbfXLWLq44m98-cVh2ih12yHnavuzS5aJDpINzW-e6hW5GPYR_PipRiM8gNjrx-Dlut9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+multi-agent+deep+reinforcement+learning+for+cooperative+multi-robot+pursuit&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Yu%2C+Chao&rft.au=Dong%2C+Yinzhao&rft.au=Li%2C+Yangning&rft.au=Chen%2C+Yatong&rft.date=2020-07-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.eissn=2051-3305&rft.volume=2020&rft.issue=13&rft.spage=499&rft.epage=504&rft_id=info:doi/10.1049%2Fjoe.2019.1200&rft.externalDocID=10_1049_joe_2019_1200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon