Local and Global Approximation Theorems for Positive Linear Operators
In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation f...
Uložené v:
| Vydané v: | Journal of approximation theory Ročník 94; číslo 3; s. 396 - 419 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.09.1998
|
| ISSN: | 0021-9045, 1096-0430 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation for exponential-type and Bernstein-type operators. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1006/jath.1998.3212 |