Local and Global Approximation Theorems for Positive Linear Operators

In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of approximation theory Ročník 94; číslo 3; s. 396 - 419
Hlavní autor: Felten, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.1998
ISSN:0021-9045, 1096-0430
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation for exponential-type and Bernstein-type operators.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1998.3212