Isoperimetric Partitioning: A New Algorithm for Graph Partitioning

We present a new algorithm for graph partitioning based on optimization of the combinatorial isoperimetric constant. It is shown empirically that this algorithm is competitive with other global partitioning algorithms in terms of partition quality. The isoperimetric algorithm is easy to parallelize,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on scientific computing Ročník 27; číslo 6; s. 1844 - 1866
Hlavní autoři: Grady, Leo, Schwartz, Eric L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2006
Témata:
ISSN:1064-8275, 1095-7197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new algorithm for graph partitioning based on optimization of the combinatorial isoperimetric constant. It is shown empirically that this algorithm is competitive with other global partitioning algorithms in terms of partition quality. The isoperimetric algorithm is easy to parallelize, does not require coordinate information, and handles nonplanar graphs, weighted graphs, and families of graphs which are known to cause problems for other methods. Compared to spectral partitioning, the isoperimetric algorithm is faster and more stable. An exact circuit analogy to the algorithm is also developed with a natural random walks interpretation. The isoperimetric algorithm for graph partitioning is implemented in our publicly available Graph Analysis Toolbox [L. Grady, Ph.D. thesis, Boston University, Boston, MA, 2004], [L. Grady and E. L. Schwartz, Technical report TR-03-021, Boston University, Boston, MA, 2003] for MATLAB obtainable at http://eslab.bu.edu/software/graphanalysis/. This toolbox was used to generate all of the results compiled in the tables of this paper.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/040609008