The minimizer of the sum of two strongly convex functions

The optimization problem concerning the determination of the minimizer for the sum of convex functions holds significant importance in the realm of distributed and decentralized optimization. In scenarios where full knowledge of the functions is not available, limiting information to individual mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 74; H. 16; S. 4357 - 4397
Hauptverfasser: Kuwaranancharoen, Kananart, Sundaram, Shreyas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 10.12.2025
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The optimization problem concerning the determination of the minimizer for the sum of convex functions holds significant importance in the realm of distributed and decentralized optimization. In scenarios where full knowledge of the functions is not available, limiting information to individual minimizers and convexity parameters - either due to privacy concerns or the nature of solution analysis - necessitates an exploration of the region encompassing potential minimizers based solely on these known quantities. The characterization of this region becomes notably intricate when dealing with multivariate strongly convex functions compared to the univariate case. This paper contributes outer and inner approximations for the region harboring the minimizer of the sum of two strongly convex functions, given a constraint on the norm of the gradient at the minimizer of the sum. Notably, we explicitly delineate the boundaries and interiors of both the outer and inner approximations. Intriguingly, the boundaries as well as the interiors turn out to be identical. Furthermore, we establish that the boundary of the region containing potential minimizers aligns with that of the outer and inner approximations.
AbstractList The optimization problem concerning the determination of the minimizer for the sum of convex functions holds significant importance in the realm of distributed and decentralized optimization. In scenarios where full knowledge of the functions is not available, limiting information to individual minimizers and convexity parameters – either due to privacy concerns or the nature of solution analysis – necessitates an exploration of the region encompassing potential minimizers based solely on these known quantities. The characterization of this region becomes notably intricate when dealing with multivariate strongly convex functions compared to the univariate case. This paper contributes outer and inner approximations for the region harboring the minimizer of the sum of two strongly convex functions, given a constraint on the norm of the gradient at the minimizer of the sum. Notably, we explicitly delineate the boundaries and interiors of both the outer and inner approximations. Intriguingly, the boundaries as well as the interiors turn out to be identical. Furthermore, we establish that the boundary of the region containing potential minimizers aligns with that of the outer and inner approximations.
Author Sundaram, Shreyas
Kuwaranancharoen, Kananart
Author_xml – sequence: 1
  givenname: Kananart
  surname: Kuwaranancharoen
  fullname: Kuwaranancharoen, Kananart
  email: kananart.kuwaranancharoen@intel.com, kkuwaran@purdue.edu
  organization: Intel Corporation
– sequence: 2
  givenname: Shreyas
  surname: Sundaram
  fullname: Sundaram, Shreyas
  organization: Purdue University
BookMark eNp9kE1LAzEQhoNUsFZ_grDgeWu-dpPclOIXFLzUc0iziabsJjXZtdZfb9bWq5eZYXhm3pf3HEx88AaAKwTnCHJ4AzEhSBA6xxDnQiEWmJyAKcpDSQWtJmA6MuUInYHzlDYQYlRjOgVi9W6KznnXuW8Ti2CLPi_S0P2Ou1CkPgb_1u4LHfyn-Srs4HXvgk8X4NSqNpnLY5-B14f71eKpXL48Pi_ulqXGvO5L0xBUNYIpWFVcC8PrbIhzxeF6NG-5gg0TzCBGK6KsoojrDNRmjdja1oTMwPXh7zaGj8GkXm7CEH2WlAQzgjATWGSqOlA6hpSisXIbXafiXiIoRyH5l5IcU5LHlPLd7eHOeRtip3Yhto3s1b4N0Ubltcsy_7_4AcOJbj4
Cites_doi 10.1109/72.80341
10.1109/tac.2020.3008139
10.1109/tsp.2007.913164
10.1137/070697835
10.1137/s003614450037906x
10.4135/9781412983433
10.1007/978-3-7908-2604-3_16
10.1109/tac.2011.2167817
10.1109/mcs.2016.2558401
10.1017/s0004972700027441
10.23919/ACC50511.2021.9483067
10.1137/120863290
10.1145/2933057.2933105
10.4153/cjm-1980-020-7
10.1016/j.laa.2014.10.011
10.1007/s11590-016-1058-9
10.1007/978-3-319-46128-1_50
10.1016/0304-4068(82)90026-x
10.1109/ACSSC.2006.356622
10.1109/tac.2012.2203215
10.1109/tsipn.2019.2928176
10.1109/tac.2008.2009515
10.1109/5254.708428
10.1109/jproc.2014.2306253
10.1145/2184319.2184343
10.1109/tsipn.2024.3379844
10.1145/1015330.1015435
10.1137/16m1084316
10.1561/2200000050
10.1109/tac.1971.1099831
10.1561/2200000018
10.1146/annurev-control-060117-105131
10.1016/0022-247x(88)90113-8
10.23919/ACC45564.2020.9147407
10.5555/2188385.2343697
10.1287/moor.2016.0817
10.1006/jmaa.2000.7310
10.23919/ACC45564.2020.9147396
10.1007/bf02592948
10.1109/tsg.2017.2720471
10.1016/0005-1098(71)90059-8
10.1109/tac.2018.2836919
10.1080/00207178908953472
10.1007/s11590-014-0795-x
10.1007/978-3-319-91578-4
10.1109/ALLERTON.2015.7447103
10.1002/9781118548387
10.1214/12-sts400
10.1007/978-0-387-77242-4
10.1137/1.9781611971484
10.1007/978-3-030-58951-6_27
10.1109/PES.2011.6039082
10.1145/3382734.3405748
10.1109/CDC.2018.8619735
10.1561/2200000016
10.1007/bf01400115
10.1016/j.arcontrol.2019.05.006
10.1137/1.9781611971217
10.1109/tac.2014.2364096
10.1561/2200000083
10.1561/2200000058
10.1109/ACC.2016.7526806
10.1109/tsp.2012.2194290
10.1109/tsp.2009.2024278
10.1109/jproc.2018.2817461
10.1109/tac.2011.2161027
10.1016/j.isprsjprs.2010.11.001
10.1007/s10107-020-01510-4
10.1109/CDC.2012.6426691
10.1007/978-0-387-84858-7
10.1002/0471704091
10.1007/978-3-030-63076-8_2
10.1109/tsipn.2022.3188456
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2024.2402923
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 4397
ExternalDocumentID 10_1080_02331934_2024_2402923
2402923
Genre Research Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1653648
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-ed315d97a0558c9e8694588a80b1080f8a0d797e17453afa418c4586eb17bf633
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001316597800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Thu Nov 20 05:10:45 EST 2025
Thu Nov 27 01:06:24 EST 2025
Thu Nov 20 04:10:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-ed315d97a0558c9e8694588a80b1080f8a0d797e17453afa418c4586eb17bf633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3273127929
PQPubID 27961
PageCount 41
ParticipantIDs proquest_journals_3273127929
crossref_primary_10_1080_02331934_2024_2402923
informaworld_taylorfrancis_310_1080_02331934_2024_2402923
PublicationCentury 2000
PublicationDate 2025-12-10
PublicationDateYYYYMMDD 2025-12-10
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-10
  day: 10
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_52_1
e_1_3_3_75_1
Goebel R (e_1_3_3_63_1) 2008; 15
e_1_3_3_50_1
e_1_3_3_77_1
e_1_3_3_71_1
e_1_3_3_79_1
Nedić A. (e_1_3_3_17_1) 2018
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_40_1
e_1_3_3_86_1
e_1_3_3_61_1
e_1_3_3_88_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_80_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_76_1
e_1_3_3_78_1
e_1_3_3_70_1
Montgomery DC (e_1_3_3_43_1) 2021
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_91_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_72_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_74_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_87_1
e_1_3_3_60_1
e_1_3_3_89_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_68_1
e_1_3_3_81_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
Yan M. (e_1_3_3_64_1) 2014; 21
e_1_3_3_66_1
e_1_3_3_83_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_85_1
References_xml – ident: e_1_3_3_33_1
– ident: e_1_3_3_79_1
  doi: 10.1109/72.80341
– ident: e_1_3_3_29_1
  doi: 10.1109/tac.2020.3008139
– ident: e_1_3_3_41_1
– ident: e_1_3_3_81_1
  doi: 10.1109/tsp.2007.913164
– ident: e_1_3_3_72_1
  doi: 10.1137/070697835
– ident: e_1_3_3_70_1
  doi: 10.1137/s003614450037906x
– ident: e_1_3_3_44_1
  doi: 10.4135/9781412983433
– ident: e_1_3_3_65_1
  doi: 10.1007/978-3-7908-2604-3_16
– ident: e_1_3_3_14_1
  doi: 10.1109/tac.2011.2167817
– ident: e_1_3_3_8_1
  doi: 10.1109/mcs.2016.2558401
– volume: 15
  start-page: 263
  issue: 2
  year: 2008
  ident: e_1_3_3_63_1
  article-title: Local strong convexity and local lipschitz continuity of the gradient of convex functions
  publication-title: J Convex Anal
– ident: e_1_3_3_86_1
  doi: 10.1017/s0004972700027441
– ident: e_1_3_3_27_1
  doi: 10.23919/ACC50511.2021.9483067
– ident: e_1_3_3_53_1
  doi: 10.1137/120863290
– ident: e_1_3_3_38_1
– ident: e_1_3_3_21_1
  doi: 10.1145/2933057.2933105
– ident: e_1_3_3_88_1
  doi: 10.4153/cjm-1980-020-7
– ident: e_1_3_3_57_1
  doi: 10.1016/j.laa.2014.10.011
– ident: e_1_3_3_32_1
– ident: e_1_3_3_54_1
  doi: 10.1007/s11590-016-1058-9
– ident: e_1_3_3_84_1
  doi: 10.1007/978-3-319-46128-1_50
– ident: e_1_3_3_62_1
  doi: 10.1016/0304-4068(82)90026-x
– ident: e_1_3_3_40_1
– ident: e_1_3_3_80_1
  doi: 10.1109/ACSSC.2006.356622
– ident: e_1_3_3_7_1
  doi: 10.1109/tac.2012.2203215
– ident: e_1_3_3_25_1
  doi: 10.1109/tsipn.2019.2928176
– ident: e_1_3_3_13_1
  doi: 10.1109/tac.2008.2009515
– ident: e_1_3_3_51_1
– ident: e_1_3_3_46_1
  doi: 10.1109/5254.708428
– ident: e_1_3_3_4_1
  doi: 10.1109/jproc.2014.2306253
– ident: e_1_3_3_73_1
  doi: 10.1145/2184319.2184343
– ident: e_1_3_3_71_1
– ident: e_1_3_3_30_1
  doi: 10.1109/tsipn.2024.3379844
– ident: e_1_3_3_56_1
  doi: 10.1145/1015330.1015435
– ident: e_1_3_3_20_1
  doi: 10.1137/16m1084316
– ident: e_1_3_3_58_1
  doi: 10.1561/2200000050
– ident: e_1_3_3_76_1
  doi: 10.1109/tac.1971.1099831
– ident: e_1_3_3_2_1
  doi: 10.1561/2200000018
– ident: e_1_3_3_16_1
  doi: 10.1146/annurev-control-060117-105131
– ident: e_1_3_3_85_1
  doi: 10.1016/0022-247x(88)90113-8
– ident: e_1_3_3_50_1
  doi: 10.23919/ACC45564.2020.9147407
– ident: e_1_3_3_69_1
  doi: 10.5555/2188385.2343697
– ident: e_1_3_3_90_1
  doi: 10.1287/moor.2016.0817
– ident: e_1_3_3_87_1
  doi: 10.1006/jmaa.2000.7310
– ident: e_1_3_3_11_1
– ident: e_1_3_3_28_1
  doi: 10.23919/ACC45564.2020.9147396
– volume-title: Introduction to linear regression analysis
  year: 2021
  ident: e_1_3_3_43_1
– ident: e_1_3_3_36_1
– ident: e_1_3_3_61_1
  doi: 10.1007/bf02592948
– ident: e_1_3_3_5_1
  doi: 10.1109/tsg.2017.2720471
– ident: e_1_3_3_77_1
  doi: 10.1016/0005-1098(71)90059-8
– ident: e_1_3_3_22_1
  doi: 10.1109/tac.2018.2836919
– ident: e_1_3_3_78_1
  doi: 10.1080/00207178908953472
– ident: e_1_3_3_52_1
  doi: 10.1007/s11590-014-0795-x
– ident: e_1_3_3_59_1
  doi: 10.1007/978-3-319-91578-4
– ident: e_1_3_3_34_1
  doi: 10.1109/ALLERTON.2015.7447103
– ident: e_1_3_3_45_1
  doi: 10.1002/9781118548387
– ident: e_1_3_3_68_1
  doi: 10.1214/12-sts400
– ident: e_1_3_3_47_1
  doi: 10.1007/978-0-387-77242-4
– ident: e_1_3_3_75_1
  doi: 10.1137/1.9781611971484
– volume-title: Distributed optimization over networks
  year: 2018
  ident: e_1_3_3_17_1
– ident: e_1_3_3_39_1
  doi: 10.1007/978-3-030-58951-6_27
– ident: e_1_3_3_6_1
  doi: 10.1109/PES.2011.6039082
– ident: e_1_3_3_26_1
  doi: 10.1145/3382734.3405748
– ident: e_1_3_3_49_1
  doi: 10.1109/CDC.2018.8619735
– ident: e_1_3_3_66_1
– ident: e_1_3_3_3_1
  doi: 10.1561/2200000016
– ident: e_1_3_3_91_1
  doi: 10.1007/bf01400115
– ident: e_1_3_3_18_1
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: e_1_3_3_74_1
  doi: 10.1137/1.9781611971217
– ident: e_1_3_3_15_1
  doi: 10.1109/tac.2014.2364096
– ident: e_1_3_3_35_1
  doi: 10.1561/2200000083
– ident: e_1_3_3_12_1
– ident: e_1_3_3_89_1
  doi: 10.1561/2200000058
– ident: e_1_3_3_24_1
  doi: 10.1109/ACC.2016.7526806
– ident: e_1_3_3_23_1
– ident: e_1_3_3_83_1
  doi: 10.1109/tsp.2012.2194290
– ident: e_1_3_3_82_1
  doi: 10.1109/tsp.2009.2024278
– ident: e_1_3_3_9_1
  doi: 10.1109/jproc.2018.2817461
– ident: e_1_3_3_19_1
  doi: 10.1109/tac.2011.2161027
– ident: e_1_3_3_48_1
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: e_1_3_3_60_1
  doi: 10.1007/s10107-020-01510-4
– ident: e_1_3_3_10_1
  doi: 10.1109/CDC.2012.6426691
– ident: e_1_3_3_55_1
  doi: 10.1007/978-0-387-84858-7
– volume: 21
  start-page: 965
  issue: 4
  year: 2014
  ident: e_1_3_3_64_1
  article-title: Extension of convex function
  publication-title: J Convex Anal
– ident: e_1_3_3_42_1
  doi: 10.1002/0471704091
– ident: e_1_3_3_67_1
– ident: e_1_3_3_37_1
  doi: 10.1007/978-3-030-63076-8_2
– ident: e_1_3_3_31_1
  doi: 10.1109/tsipn.2022.3188456
SSID ssj0021624
Score 2.3935697
Snippet The optimization problem concerning the determination of the minimizer for the sum of convex functions holds significant importance in the realm of distributed...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 4357
SubjectTerms Approximation
Boundaries
Convex analysis
Convexity
decentralized optimization
fault-tolerant systems
Interiors
Optimization
quadratic functions
strongly convex functions
Title The minimizer of the sum of two strongly convex functions
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2024.2402923
https://www.proquest.com/docview/3273127929
Volume 74
WOSCitedRecordID wos001316597800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQOroU78HBGiYkAVQxHdIsexUSVoUROev56zk6BWCDHAEmXIWdb5fPedc_4OoRNeKMm8cUQkThLGpCWAqhmhKhfKWs-Niyt9LQcDNRrpm6aasGzKKkMO7WuiiOirw-Y2edlWxJ1BmAHDScOJSAIPyIAApYAXBmQfivqG_buvlIuK2NY2SJAg0t7h-WmUhei0wF36zVfHANRf_4epb6C1Bn3i89pcNtGSm2yh1TlOwm2kwXBwIBx5HH-4GZ56DBARg73G19cpLsPh-f3DO44F6284RMZovDvotn85vLgiTX8FYhMlKuKKlPJCS9PjXFntlNDh3qpRvTxM1ivTK6SWDpIWnhpvGFUWPhDg3mXuRZruos5kOnF7CAvnmJfhL2bBWWq1sd7n1DMuc6OUVl102uo1e6ppNDLaspM2OsmCTrJGJ12k57WfVfH8wtfNRrL0F9nDdqmyZkeCCOA0GtgS9f4fhj5AK0loAEwTiF-HqFPNnt0RWrYv1bicHUfb-wS6jtPG
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aBfXgW6xWzcFrtPvI6yhiUaw9VewtZLOJFLSVdn3-ejPprrSIeNDLsoedECaTee3MNwgd01zw1GlLWGw5SVNuiPeqUxKJjAljHNU2nHSbdzqi15PTvTBQVgkxtJsARQRdDZcbktFVSdyptzNechJIicT-4UMg76bMowWYTgcBWLd19xV0RSwMtgUSAjRVF89Py8zYpxn00m_aOpig1tp_bH4drZYOKD6bSMwGmrODTbQyBUu4haSXHQyYI4_9DzvCQ4e9l4i9yIbX1yEeQ_78_uEdh5r1NwzGMcjvNrptXXTPL0k5YoGYWLCC2DyJaC65blIqjLSCSWhd1aKZwWad0M2cS2593EIT7XQaCeM_YF7D88yxJNlBtcFwYHcRZtamjsOPzJymiZHaOJdFLqU800JIUUcnFWPV0wRJQ0UVQGnJEwU8USVP6khOs18VIYXhJvNGVPILbaM6K1VeSk_iXbUIABPl3h-WPkJLl92btmpfda730XIM84Cj2JuzBqoVo2d7gBbNS9Efjw6DIH4CLkXX6Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8MgFCc6jdGD38b5ycErOloocDTqonFZdphxN0IpmCW6LVv9_OsF2potxnjQS9NDHyGPH--DPn4PgBOacUasMiiJDEOEMI1cVE0Q5mnCtbZUmbDSLdZu815PdMpqwklZVulzaFsQRQRb7Tf3KLNVRdyZczMOOLE_EYncw2VALkqZBwsudKYe2N3m_VfOhZPQ19aLIC9TXeL5aZgZ9zRDXvrNWAcP1Fz7h7mvg9Uy_ITnBV42wJwZbIKVKVLCLSAccqBnHHnqf5gxHFroYkToABteX4dw4k_PHx7fYahYf4PeNQb0boO75lX34hqVDRaQjniSI5PFmGaCqQalXAvDE-EvrireSP1kLVeNjAlmXNZCY2UVwVy7DxJn31lqkzjeAbXBcGB2AUyMIZb535gZJbEWSlubYksoSxXngtfBaaVXOSp4NCSu6ElLnUivE1nqpA7EtPZlHg4wbNFtRMa_yB5USyXLLelEXKCGPV2i2PvD0MdgqXPZlK2b9u0-WI58M2AcOV92AGr5-NkcgkX9kvcn46MAw0-6Ltab
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+minimizer+of+the+sum+of+two+strongly+convex+functions&rft.jtitle=Optimization&rft.au=Kuwaranancharoen%2C+Kananart&rft.au=Sundaram%2C+Shreyas&rft.date=2025-12-10&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=74&rft.issue=16&rft.spage=4357&rft.epage=4397&rft_id=info:doi/10.1080%2F02331934.2024.2402923&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2024_2402923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon