Lagrange multiplier rules for weak approximate Pareto solutions to constrained vector optimization problems with variable ordering structures

In this paper, we consider the weak approximate solutions to constrained vector optimization problems with variable ordering structures. In terms of abstract subdifferentials, normal cones and coderivatives, we establish Lagrange rules for this kind of solutions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 71; H. 7; S. 2131 - 2155
Hauptverfasser: Hu, Chunhai, Zhu, Jiangxing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.07.2022
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the weak approximate solutions to constrained vector optimization problems with variable ordering structures. In terms of abstract subdifferentials, normal cones and coderivatives, we establish Lagrange rules for this kind of solutions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2020.1857753