Centrally (quasi-)morphic modules
The main objective of this paper is investigating centrally (quasi-)morphic modules as a generalization of centrally morphic rings. We call an R-module M centrally quasi-morphic if for any f ∈ End R ( M ) , there exist central elements g , h ∈ End R ( M ) such that Ker f = Im g and Im f = Ker h...
Uloženo v:
| Vydáno v: | Communications in algebra Ročník 53; číslo 4; s. 1365 - 1377 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.04.2025
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0092-7872, 1532-4125 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The main objective of this paper is investigating centrally (quasi-)morphic modules as a generalization of centrally morphic rings. We call an R-module M centrally quasi-morphic if for any
f
∈
End
R
(
M
)
, there exist central elements
g
,
h
∈
End
R
(
M
)
such that
Ker
f
=
Im
g
and
Im
f
=
Ker
h
. In addition, M
R
is said to be centrally morphic whenever g = h in the above definition. We show that for image-projective modules, these two notions coincide and every centrally quasi-morphic module is abelian. We prove that a module with strongly regular endomorphism ring (called strongly endoregular) is centrally morphic. Several properties of strongly endoregular modules are obtained. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0092-7872 1532-4125 |
| DOI: | 10.1080/00927872.2024.2409328 |