Lessons on Datasets and Paradigms in Machine Learning for Symbolic Computation: A Case Study on CAD
Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine l...
Uloženo v:
| Vydáno v: | Mathematics in computer science Ročník 18; číslo 3 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.10.2024
|
| Témata: | |
| ISSN: | 1661-8270, 1661-8289 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine learning model. This study reports lessons on such use of machine learning in symbolic computation, in particular on the importance of analysing datasets prior to machine learning and on the different machine learning paradigms that may be utilised. We present results for a particular case study, the selection of variable ordering for cylindrical algebraic decomposition, but expect that the lessons learned are applicable to other decisions in symbolic computation. We utilise an existing dataset of examples derived from applications which was found to be imbalanced with respect to the variable ordering decision. We introduce an augmentation technique for polynomial systems problems that allows us to balance and further augment the dataset, improving the machine learning results by 28% and 38% on average, respectively. We then demonstrate how the existing machine learning methodology used for the problem—classification—might be recast into the regression paradigm. While this does not have a radical change on the performance, it does widen the scope in which the methodology can be applied to make choices. |
|---|---|
| AbstractList | Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine learning model. This study reports lessons on such use of machine learning in symbolic computation, in particular on the importance of analysing datasets prior to machine learning and on the different machine learning paradigms that may be utilised. We present results for a particular case study, the selection of variable ordering for cylindrical algebraic decomposition, but expect that the lessons learned are applicable to other decisions in symbolic computation. We utilise an existing dataset of examples derived from applications which was found to be imbalanced with respect to the variable ordering decision. We introduce an augmentation technique for polynomial systems problems that allows us to balance and further augment the dataset, improving the machine learning results by 28% and 38% on average, respectively. We then demonstrate how the existing machine learning methodology used for the problem—classification—might be recast into the regression paradigm. While this does not have a radical change on the performance, it does widen the scope in which the methodology can be applied to make choices. |
| ArticleNumber | 17 |
| Author | del Río, Tereso England, Matthew |
| Author_xml | – sequence: 1 givenname: Tereso surname: del Río fullname: del Río, Tereso organization: Coventry University – sequence: 2 givenname: Matthew surname: England fullname: England, Matthew email: Matthew.England@coventry.ac.uk organization: Coventry University |
| BookMark | eNp9kMtOwzAQAC1UJFrgBzj5BwLruHEcblXKSwoCqXC2NrZTXDV2ZaeH_j0pRRw57R52RquZkYkP3hJyw-CWAZR3ibFSigzyeQZQVCyDMzJlQrBM5rKa_O0lXJBZShsAkbM5mxLd2JSCTzR4usQBkx0SRW_oO0Y0bt0n6jx9Rf3lvKWNxeidX9MuRLo69G3YOk3r0O_2Aw4u-Hu6oPUooathbw5Hab1YXpHzDrfJXv_OS_L5-PBRP2fN29NLvWgynUsxZKZFW0rNJLRMayl4UZXWYqd5iWAF16UR3CLvWtQFtBU3nFWVKfKCm05Izi9JfvLqGFKKtlO76HqMB8VAHTOpUyY1ZlI_mRSMED9BaTz2axvVJuyjH__8j_oGmUJtDQ |
| Cites_doi | 10.1007/978-3-030-52200-1_29 10.1007/978-3-031-14788-3_17 10.1007/978-3-030-43120-4_27 10.1007/978-3-030-60026-6_20 10.1007/978-3-319-10575-8_11 10.1016/j.jsc.2022.08.001 10.1016/j.jsc.2022.08.021 10.1016/S0747-7171(88)80004-X 10.1007/978-3-642-39320-4_2 10.1007/978-1-4614-6849-3 10.1007/978-3-642-32347-8_1 10.1007/978-3-030-23250-4_7 10.1007/s11786-019-00394-8 10.1016/j.jsc.2023.102276 10.1613/jair.2490 10.1186/s40537-019-0197-0 10.1038/s41586-021-04086-x 10.1006/jsco.2001.0463 10.1016/j.jsc.2019.07.008 10.1007/978-3-031-42753-4_21 10.1007/978-3-319-08434-3_8 10.1007/978-3-031-64529-7_18 10.1109/ICMLA.2016.0064 10.1109/SYNASC.2016.020 10.1145/1277548.1277557 10.1145/120694.120701 10.1007/3-540-07407-4_17 10.1007/978-3-030-52200-1_28 10.1145/3452143.3465520 10.1109/SYNASC.2014.15 10.1007/978-3-662-44199-2_65 10.1145/1005285.1005303 10.48550/ARXIV.1912.01412 10.1007/978-3-030-72013-1_16 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 |
| Copyright_xml | – notice: The Author(s) 2024 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s11786-024-00591-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1661-8289 |
| ExternalDocumentID | 10_1007_s11786_024_00591_0 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BAPOH BDATZ BGNMA C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
| ID | FETCH-LOGICAL-c286t-dbae78c180b1cc863597eeafc37a0e63c7d63ea3fbac50b93d3199d5253df6833 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310159200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1661-8270 |
| IngestDate | Sat Nov 29 06:37:38 EST 2025 Thu May 22 04:32:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 68W30 Cylindrical algebraic decomposition 68T05 Machine learning Classification Regression Data augmentation Symbolic computation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c286t-dbae78c180b1cc863597eeafc37a0e63c7d63ea3fbac50b93d3199d5253df6833 |
| OpenAccessLink | https://link.springer.com/10.1007/s11786-024-00591-0 |
| ParticipantIDs | crossref_primary_10_1007_s11786_024_00591_0 springer_journals_10_1007_s11786_024_00591_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20241000 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Mathematics in computer science |
| PublicationTitleAbbrev | Math.Comput.Sci |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | England, Florescu, Kaliszyk, Brady, Kohlhase, Sacerdoti Coen (CR19) 2019 Davenport, Heintz (CR14) 1988; 5 del Río, England, Boulier, England, Sadykov, Vorozhtsov (CR17) 2022 Bao, He, Hirst (CR1) 2023; 116 CR18 CR39 CR16 CR38 Shorten, Khoshgoftaar (CR36) 2019; 6 CR37 Paulson, Beringer, Felty (CR32) 2012 CR13 Davies, Veličković, Buesing, Blackwell, Zheng, Tomašev, Tanburn, Battaglia, Blundell, Juhász, Lackenby, Williamson, Hassabis, Kohli (CR15) 2021; 600 CR35 CR12 CR11 Florescu, England, Slamanig, Tsigaridas, Zafeirakopoulos (CR21) 2020 CR33 Barrett, Tinelli, Clarke, Henzinger, Veith, Bloem (CR3) 2018 CR31 CR30 Kauers, Moosbauer, Boulier, England, Sadykov, Vorozhtsov (CR28) 2020 Brown (CR7) 2001; 32 Bradford, Davenport, England, Errami, Gerdt, Grigoriev, Hoyt, Košta, Radulescu, Sturm, Weber (CR6) 2020; 98 Pickering, Del Rio Almajano, England, Cohen (CR34) 2024 Huang, England, Wilson, Bridge, Davenport, Paulson (CR25) 2019; 13 CR2 Kuhn, Johnson (CR29) 2013 Bradford, Davenport, England, Wilson, Carette, Aspinall, Lange, Sojka, Windsteiger (CR5) 2013 Hester, Hitaj, Passmore, Owre, Shankar, Yeh, Dubois, Kerber (CR23) 2023 Bernal, Hauenstein, Mehta, Regan, Tang (CR4) 2023; 115 CR8 CR9 CR27 CR26 Brown, Daves, Bigatti, Carette, Davenport, Joswig, de Wolff (CR10) 2020 CR24 CR22 CR20 Xu, Hutter, Hoos, Leyton-Brown (CR40) 2008; 32 591_CR20 R Bradford (591_CR5) 2013 Z Huang (591_CR25) 2019; 13 T del Río (591_CR17) 2022 EA Bernal (591_CR4) 2023; 115 591_CR18 J Bao (591_CR1) 2023; 116 CW Brown (591_CR10) 2020 591_CR11 591_CR33 591_CR13 591_CR35 L Xu (591_CR40) 2008; 32 591_CR12 591_CR37 591_CR39 591_CR16 591_CR38 C Barrett (591_CR3) 2018 M England (591_CR19) 2019 D Florescu (591_CR21) 2020 M Kuhn (591_CR29) 2013 591_CR31 591_CR30 R Bradford (591_CR6) 2020; 98 JH Davenport (591_CR14) 1988; 5 L Pickering (591_CR34) 2024 A Davies (591_CR15) 2021; 600 591_CR9 M Kauers (591_CR28) 2020 591_CR22 CW Brown (591_CR7) 2001; 32 591_CR8 591_CR24 591_CR2 591_CR26 C Shorten (591_CR36) 2019; 6 J Hester (591_CR23) 2023 591_CR27 LC Paulson (591_CR32) 2012 |
| References_xml | – ident: CR22 – ident: CR18 – start-page: 292 year: 2020 end-page: 301 ident: CR10 article-title: Applying machine learning to heuristics for real polynomial constraint solving publication-title: Mathematical Software–ICMS 2020. Lecture Notes in Computer Science doi: 10.1007/978-3-030-52200-1_29 – start-page: 300 year: 2022 end-page: 317 ident: CR17 article-title: New heuristic to choose a cylindrical algebraic decomposition variable ordering motivated by complexity analysis publication-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science doi: 10.1007/978-3-031-14788-3_17 – ident: CR39 – ident: CR2 – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – start-page: 341 year: 2020 end-page: 356 ident: CR21 article-title: Improved cross-validation for classifiers that make algorithmic choices to minimise runtime without compromising output correctness publication-title: Mathematical Aspects of Computer and Information Sciences (Proc. MACIS ’19). Lecture Notes in Computer Science doi: 10.1007/978-3-030-43120-4_27 – start-page: 358 year: 2020 end-page: 367 ident: CR28 article-title: Good pivots for small sparse matrices publication-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science doi: 10.1007/978-3-030-60026-6_20 – ident: CR33 – start-page: 305 year: 2018 end-page: 343 ident: CR3 article-title: Satisfiability modulo theories publication-title: Handbook of Model Checking doi: 10.1007/978-3-319-10575-8_11 – volume: 115 start-page: 409 year: 2023 end-page: 426 ident: CR4 article-title: Machine learning the real discriminant locus publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2022.08.001 – ident: CR35 – ident: CR8 – volume: 116 start-page: 1 year: 2023 end-page: 38 ident: CR1 article-title: Neurons on amoebae publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2022.08.021 – volume: 5 start-page: 29 issue: 1–2 year: 1988 end-page: 35 ident: CR14 article-title: Real quantifier elimination is doubly exponential publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80004-X – ident: CR27 – start-page: 19 year: 2013 end-page: 34 ident: CR5 article-title: Optimising problem formulations for cylindrical algebraic decomposition publication-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science doi: 10.1007/978-3-642-39320-4_2 – year: 2013 ident: CR29 publication-title: Applied Predictive Modeling doi: 10.1007/978-1-4614-6849-3 – start-page: 1 year: 2012 end-page: 10 ident: CR32 article-title: MetiTarski: past and future publication-title: Interactive Theorem Proving. Lecture Notes in Computer Science doi: 10.1007/978-3-642-32347-8_1 – start-page: 93 year: 2019 end-page: 108 ident: CR19 article-title: Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition publication-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science doi: 10.1007/978-3-030-23250-4_7 – ident: CR38 – ident: CR31 – ident: CR13 – volume: 13 start-page: 461 issue: 4 year: 2019 end-page: 488 ident: CR25 article-title: Using machine learning to improve cylindrical algebraic decomposition publication-title: Math. Comput. Sci. doi: 10.1007/s11786-019-00394-8 – ident: CR11 – year: 2024 ident: CR34 article-title: Explainable AI insights for symbolic computation: a case study on selecting the variable ordering for cylindrical algebraic decomposition publication-title: J. Symb. Comput. TBC:TBC doi: 10.1016/j.jsc.2023.102276 – ident: CR9 – volume: 32 start-page: 565 year: 2008 end-page: 606 ident: CR40 article-title: SATzilla: portfolio-based algorithm selection for SAT publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2490 – volume: 6 start-page: 60 issue: 1 year: 2019 ident: CR36 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 600 start-page: 70 year: 2021 end-page: 74 ident: CR15 article-title: Advancing mathematics by guiding human intuition with AI publication-title: Nature doi: 10.1038/s41586-021-04086-x – ident: CR26 – ident: CR24 – volume: 32 start-page: 447 issue: 5 year: 2001 end-page: 465 ident: CR7 article-title: Improved projection for cylindrical algebraic decomposition publication-title: J. Symb. Comput. doi: 10.1006/jsco.2001.0463 – volume: 98 start-page: 84 year: 2020 end-page: 119 ident: CR6 article-title: Identifying the parametric occurrence of multiple steady states for some biological networks publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2019.07.008 – ident: CR20 – start-page: 297 year: 2023 end-page: 302 ident: CR23 article-title: An augmented MetiTarski dataset for real quantifier elimination using machine learning publication-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science doi: 10.1007/978-3-031-42753-4_21 – start-page: 292 volume-title: Mathematical Software–ICMS 2020. Lecture Notes in Computer Science year: 2020 ident: 591_CR10 doi: 10.1007/978-3-030-52200-1_29 – ident: 591_CR20 – ident: 591_CR26 doi: 10.1007/978-3-319-08434-3_8 – start-page: 300 volume-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science year: 2022 ident: 591_CR17 doi: 10.1007/978-3-031-14788-3_17 – ident: 591_CR16 – start-page: 297 volume-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science year: 2023 ident: 591_CR23 doi: 10.1007/978-3-031-42753-4_21 – start-page: 1 volume-title: Interactive Theorem Proving. Lecture Notes in Computer Science year: 2012 ident: 591_CR32 doi: 10.1007/978-3-642-32347-8_1 – volume: 115 start-page: 409 year: 2023 ident: 591_CR4 publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2022.08.001 – ident: 591_CR8 – volume: 32 start-page: 565 year: 2008 ident: 591_CR40 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2490 – ident: 591_CR2 doi: 10.1007/978-3-031-64529-7_18 – start-page: 19 volume-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science year: 2013 ident: 591_CR5 doi: 10.1007/978-3-642-39320-4_2 – ident: 591_CR37 doi: 10.1109/ICMLA.2016.0064 – volume: 13 start-page: 461 issue: 4 year: 2019 ident: 591_CR25 publication-title: Math. Comput. Sci. doi: 10.1007/s11786-019-00394-8 – volume: 116 start-page: 1 year: 2023 ident: 591_CR1 publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2022.08.021 – volume: 600 start-page: 70 year: 2021 ident: 591_CR15 publication-title: Nature doi: 10.1038/s41586-021-04086-x – ident: 591_CR38 – ident: 591_CR24 doi: 10.1109/SYNASC.2016.020 – year: 2024 ident: 591_CR34 publication-title: J. Symb. Comput. TBC:TBC doi: 10.1016/j.jsc.2023.102276 – ident: 591_CR9 doi: 10.1145/1277548.1277557 – start-page: 305 volume-title: Handbook of Model Checking year: 2018 ident: 591_CR3 doi: 10.1007/978-3-319-10575-8_11 – volume: 5 start-page: 29 issue: 1–2 year: 1988 ident: 591_CR14 publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80004-X – start-page: 93 volume-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science year: 2019 ident: 591_CR19 doi: 10.1007/978-3-030-23250-4_7 – ident: 591_CR22 doi: 10.1145/120694.120701 – volume: 98 start-page: 84 year: 2020 ident: 591_CR6 publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2019.07.008 – volume: 6 start-page: 60 issue: 1 year: 2019 ident: 591_CR36 publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – ident: 591_CR13 doi: 10.1007/3-540-07407-4_17 – ident: 591_CR12 doi: 10.1007/978-3-030-52200-1_28 – ident: 591_CR27 – ident: 591_CR31 doi: 10.1145/3452143.3465520 – ident: 591_CR39 doi: 10.1109/SYNASC.2014.15 – ident: 591_CR11 doi: 10.1007/978-3-662-44199-2_65 – start-page: 358 volume-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science year: 2020 ident: 591_CR28 doi: 10.1007/978-3-030-60026-6_20 – ident: 591_CR18 doi: 10.1145/1005285.1005303 – start-page: 341 volume-title: Mathematical Aspects of Computer and Information Sciences (Proc. MACIS ’19). Lecture Notes in Computer Science year: 2020 ident: 591_CR21 doi: 10.1007/978-3-030-43120-4_27 – ident: 591_CR33 – volume: 32 start-page: 447 issue: 5 year: 2001 ident: 591_CR7 publication-title: J. Symb. Comput. doi: 10.1006/jsco.2001.0463 – ident: 591_CR30 doi: 10.48550/ARXIV.1912.01412 – ident: 591_CR35 doi: 10.1007/978-3-030-72013-1_16 – volume-title: Applied Predictive Modeling year: 2013 ident: 591_CR29 doi: 10.1007/978-1-4614-6849-3 |
| SSID | ssj0062141 |
| Score | 2.3244915 |
| Snippet | Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| SubjectTerms | Computer Science Mathematics Mathematics and Statistics |
| Title | Lessons on Datasets and Paradigms in Machine Learning for Symbolic Computation: A Case Study on CAD |
| URI | https://link.springer.com/article/10.1007/s11786-024-00591-0 |
| Volume | 18 |
| WOSCitedRecordID | wos001310159200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1661-8289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062141 issn: 1661-8270 databaseCode: RSV dateStart: 20071201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADgwFivJQDN4jUNm2ScpsGE4dtmhig3aq8Ou2wDq0Faf-eJG2ZJiEkuEduZMf-XNn-DMCNwbg0TolGHpYChZGiKCZxhBTDnHKshScdiWufDodsMolH1VBYXne71yVJF6nXw24-ZbZhNkR2YtL8BG-DHQN3zC5seB6_1fGXBOW-St8gD2IB9apRmZ9lbMLRZi3UQUyv-b_LHYKDKqWEnfINHIEtnbVAs17XACvvbYH9wTdFa34MZN_EOPPk4CKDD7wwYFbkkGcKjviSq9l0nsNZBgeu11LDioZ1Ck2OC8erubB0wrD8hrPtPezArhECbWPiygo1Nj4Br73Hl-4TqjYuIBkwUiAluKZM-swTvpTMJCMx1ZqnElPuaYIlVQRrjlPBZeSJGCvjwbGKggirlDCMT0EjW2T6DMCQiVCFMk2lrfTJUGhm8JiyiHM_EkS2wW2t-OS9JNZI1hTKVpuJ0WbitJl4bXBX6z2pnCz_5fj5345fgL3Ams716F2CRrH80FdgV34Ws3x57V7XF7Wjybg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurB-sT63IM3XUiySXbjrVRLxbYUq9Jb2FekB1NpotB_726aWAoi6H2ZLDM7802YmW8ALg3GJVESauwQKbAfKIqjMAqwYoRTTrRwZEHi2qX9PhuNokE5FJZV3e5VSbKI1IthN5cy2zDrYzsxaX6CV2HNN4hlGfMfhy9V_A29-b5K1yAPZh51ylGZn2Usw9FyLbSAmHb9f5fbge0ypUTN-RvYhRWd7kG9WteASu_dg63eN0Vrtg-ya2KceXJokqJbnhswyzPEU4UGfMrV-PUtQ-MU9YpeS41KGtZXZHJcNJy9CUsnjObfKGx7g5qoZYQg25g4s0KNjQ_guX331OrgcuMClh4Lc6wE15RJlznClZKZZCSiWvNEEsodHRJJVUg0J4ngMnBERJTx4EgFXkBUEjJCDqGWTlJ9BMhnwle-TBJpK33SF5oZPKYs4NwNRCgbcFUpPn6fE2vECwplq83YaDMutBk7Dbiu9B6XTpb9cvz4b8cvYKPz1OvG3fv-wwlsetaMRb_eKdTy6Yc-g3X5mY-z6Xnx0r4ANKLMnA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalV8uwdvujTJJtmNt1ItirUUfNBb2FdKD43SRKH_3t08fIAI4n2ZhHnszDLffANwanJcEiWhxg6RAvuBojgKowArRjjlRAtHFiSufToYsNEoGn6Z4i_Q7nVLspxpsCxNad5-UUn7c_DNpcyCZ31spyfNg3gRlnwLpLfv9fun-i4OvXJ3pWuyEGYedaqxmZ9lfE9N3_uiRbrpNf__oxuwXpWaqFP6xiYs6LQFzXqNA6qiugVrdx_UrdkWyL65-4wroucUXfLcJLk8QzxVaMhnXE3G0wxNUnRXYDA1quhZx8jUvuh-PhWWZhiV3yhsfoE6qGuEIAtYnFuhxvbb8Ni7euhe42oTA5YeC3OsBNeUSZc5wpWSmSIlolrzRBLKHR0SSVVINCeJ4DJwRESUiexIBV5AVBIyQnagkT6neheQz4SvfJkk0nYApS80M3masoBzNxCh3IOz2gjxS0m4EX9SK1ttxkabcaHN2NmD89oGcRV82S_H9_92_ARWhpe9uH8zuD2AVc9asYDxHUIjn73qI1iWb_kkmx0XTvcOhr7VgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+on+Datasets+and+Paradigms+in+Machine+Learning+for+Symbolic+Computation%3A+A+Case+Study+on+CAD&rft.jtitle=Mathematics+in+computer+science&rft.au=del+R%C3%ADo%2C+Tereso&rft.au=England%2C+Matthew&rft.date=2024-10-01&rft.pub=Springer+International+Publishing&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=18&rft.issue=3&rft_id=info:doi/10.1007%2Fs11786-024-00591-0&rft.externalDocID=10_1007_s11786_024_00591_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon |