Lessons on Datasets and Paradigms in Machine Learning for Symbolic Computation: A Case Study on CAD

Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics in computer science Ročník 18; číslo 3
Hlavní autoři: del Río, Tereso, England, Matthew
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2024
Témata:
ISSN:1661-8270, 1661-8289
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine learning model. This study reports lessons on such use of machine learning in symbolic computation, in particular on the importance of analysing datasets prior to machine learning and on the different machine learning paradigms that may be utilised. We present results for a particular case study, the selection of variable ordering for cylindrical algebraic decomposition, but expect that the lessons learned are applicable to other decisions in symbolic computation. We utilise an existing dataset of examples derived from applications which was found to be imbalanced with respect to the variable ordering decision. We introduce an augmentation technique for polynomial systems problems that allows us to balance and further augment the dataset, improving the machine learning results by 28% and 38% on average, respectively. We then demonstrate how the existing machine learning methodology used for the problem—classification—might be recast into the regression paradigm. While this does not have a radical change on the performance, it does widen the scope in which the methodology can be applied to make choices.
AbstractList Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine learning model. This study reports lessons on such use of machine learning in symbolic computation, in particular on the importance of analysing datasets prior to machine learning and on the different machine learning paradigms that may be utilised. We present results for a particular case study, the selection of variable ordering for cylindrical algebraic decomposition, but expect that the lessons learned are applicable to other decisions in symbolic computation. We utilise an existing dataset of examples derived from applications which was found to be imbalanced with respect to the variable ordering decision. We introduce an augmentation technique for polynomial systems problems that allows us to balance and further augment the dataset, improving the machine learning results by 28% and 38% on average, respectively. We then demonstrate how the existing machine learning methodology used for the problem—classification—might be recast into the regression paradigm. While this does not have a radical change on the performance, it does widen the scope in which the methodology can be applied to make choices.
ArticleNumber 17
Author del Río, Tereso
England, Matthew
Author_xml – sequence: 1
  givenname: Tereso
  surname: del Río
  fullname: del Río, Tereso
  organization: Coventry University
– sequence: 2
  givenname: Matthew
  surname: England
  fullname: England, Matthew
  email: Matthew.England@coventry.ac.uk
  organization: Coventry University
BookMark eNp9kMtOwzAQAC1UJFrgBzj5BwLruHEcblXKSwoCqXC2NrZTXDV2ZaeH_j0pRRw57R52RquZkYkP3hJyw-CWAZR3ibFSigzyeQZQVCyDMzJlQrBM5rKa_O0lXJBZShsAkbM5mxLd2JSCTzR4usQBkx0SRW_oO0Y0bt0n6jx9Rf3lvKWNxeidX9MuRLo69G3YOk3r0O_2Aw4u-Hu6oPUooathbw5Hab1YXpHzDrfJXv_OS_L5-PBRP2fN29NLvWgynUsxZKZFW0rNJLRMayl4UZXWYqd5iWAF16UR3CLvWtQFtBU3nFWVKfKCm05Izi9JfvLqGFKKtlO76HqMB8VAHTOpUyY1ZlI_mRSMED9BaTz2axvVJuyjH__8j_oGmUJtDQ
Cites_doi 10.1007/978-3-030-52200-1_29
10.1007/978-3-031-14788-3_17
10.1007/978-3-030-43120-4_27
10.1007/978-3-030-60026-6_20
10.1007/978-3-319-10575-8_11
10.1016/j.jsc.2022.08.001
10.1016/j.jsc.2022.08.021
10.1016/S0747-7171(88)80004-X
10.1007/978-3-642-39320-4_2
10.1007/978-1-4614-6849-3
10.1007/978-3-642-32347-8_1
10.1007/978-3-030-23250-4_7
10.1007/s11786-019-00394-8
10.1016/j.jsc.2023.102276
10.1613/jair.2490
10.1186/s40537-019-0197-0
10.1038/s41586-021-04086-x
10.1006/jsco.2001.0463
10.1016/j.jsc.2019.07.008
10.1007/978-3-031-42753-4_21
10.1007/978-3-319-08434-3_8
10.1007/978-3-031-64529-7_18
10.1109/ICMLA.2016.0064
10.1109/SYNASC.2016.020
10.1145/1277548.1277557
10.1145/120694.120701
10.1007/3-540-07407-4_17
10.1007/978-3-030-52200-1_28
10.1145/3452143.3465520
10.1109/SYNASC.2014.15
10.1007/978-3-662-44199-2_65
10.1145/1005285.1005303
10.48550/ARXIV.1912.01412
10.1007/978-3-030-72013-1_16
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11786-024-00591-0
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8289
ExternalDocumentID 10_1007_s11786_024_00591_0
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c286t-dbae78c180b1cc863597eeafc37a0e63c7d63ea3fbac50b93d3199d5253df6833
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310159200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8270
IngestDate Sat Nov 29 06:37:38 EST 2025
Thu May 22 04:32:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 68W30
Cylindrical algebraic decomposition
68T05
Machine learning
Classification
Regression
Data augmentation
Symbolic computation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-dbae78c180b1cc863597eeafc37a0e63c7d63ea3fbac50b93d3199d5253df6833
OpenAccessLink https://link.springer.com/10.1007/s11786-024-00591-0
ParticipantIDs crossref_primary_10_1007_s11786_024_00591_0
springer_journals_10_1007_s11786_024_00591_0
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Mathematics in computer science
PublicationTitleAbbrev Math.Comput.Sci
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References England, Florescu, Kaliszyk, Brady, Kohlhase, Sacerdoti Coen (CR19) 2019
Davenport, Heintz (CR14) 1988; 5
del Río, England, Boulier, England, Sadykov, Vorozhtsov (CR17) 2022
Bao, He, Hirst (CR1) 2023; 116
CR18
CR39
CR16
CR38
Shorten, Khoshgoftaar (CR36) 2019; 6
CR37
Paulson, Beringer, Felty (CR32) 2012
CR13
Davies, Veličković, Buesing, Blackwell, Zheng, Tomašev, Tanburn, Battaglia, Blundell, Juhász, Lackenby, Williamson, Hassabis, Kohli (CR15) 2021; 600
CR35
CR12
CR11
Florescu, England, Slamanig, Tsigaridas, Zafeirakopoulos (CR21) 2020
CR33
Barrett, Tinelli, Clarke, Henzinger, Veith, Bloem (CR3) 2018
CR31
CR30
Kauers, Moosbauer, Boulier, England, Sadykov, Vorozhtsov (CR28) 2020
Brown (CR7) 2001; 32
Bradford, Davenport, England, Errami, Gerdt, Grigoriev, Hoyt, Košta, Radulescu, Sturm, Weber (CR6) 2020; 98
Pickering, Del Rio Almajano, England, Cohen (CR34) 2024
Huang, England, Wilson, Bridge, Davenport, Paulson (CR25) 2019; 13
CR2
Kuhn, Johnson (CR29) 2013
Bradford, Davenport, England, Wilson, Carette, Aspinall, Lange, Sojka, Windsteiger (CR5) 2013
Hester, Hitaj, Passmore, Owre, Shankar, Yeh, Dubois, Kerber (CR23) 2023
Bernal, Hauenstein, Mehta, Regan, Tang (CR4) 2023; 115
CR8
CR9
CR27
CR26
Brown, Daves, Bigatti, Carette, Davenport, Joswig, de Wolff (CR10) 2020
CR24
CR22
CR20
Xu, Hutter, Hoos, Leyton-Brown (CR40) 2008; 32
591_CR20
R Bradford (591_CR5) 2013
Z Huang (591_CR25) 2019; 13
T del Río (591_CR17) 2022
EA Bernal (591_CR4) 2023; 115
591_CR18
J Bao (591_CR1) 2023; 116
CW Brown (591_CR10) 2020
591_CR11
591_CR33
591_CR13
591_CR35
L Xu (591_CR40) 2008; 32
591_CR12
591_CR37
591_CR39
591_CR16
591_CR38
C Barrett (591_CR3) 2018
M England (591_CR19) 2019
D Florescu (591_CR21) 2020
M Kuhn (591_CR29) 2013
591_CR31
591_CR30
R Bradford (591_CR6) 2020; 98
JH Davenport (591_CR14) 1988; 5
L Pickering (591_CR34) 2024
A Davies (591_CR15) 2021; 600
591_CR9
M Kauers (591_CR28) 2020
591_CR22
CW Brown (591_CR7) 2001; 32
591_CR8
591_CR24
591_CR2
591_CR26
C Shorten (591_CR36) 2019; 6
J Hester (591_CR23) 2023
591_CR27
LC Paulson (591_CR32) 2012
References_xml – ident: CR22
– ident: CR18
– start-page: 292
  year: 2020
  end-page: 301
  ident: CR10
  article-title: Applying machine learning to heuristics for real polynomial constraint solving
  publication-title: Mathematical Software–ICMS 2020. Lecture Notes in Computer Science
  doi: 10.1007/978-3-030-52200-1_29
– start-page: 300
  year: 2022
  end-page: 317
  ident: CR17
  article-title: New heuristic to choose a cylindrical algebraic decomposition variable ordering motivated by complexity analysis
  publication-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science
  doi: 10.1007/978-3-031-14788-3_17
– ident: CR39
– ident: CR2
– ident: CR16
– ident: CR37
– ident: CR12
– ident: CR30
– start-page: 341
  year: 2020
  end-page: 356
  ident: CR21
  article-title: Improved cross-validation for classifiers that make algorithmic choices to minimise runtime without compromising output correctness
  publication-title: Mathematical Aspects of Computer and Information Sciences (Proc. MACIS ’19). Lecture Notes in Computer Science
  doi: 10.1007/978-3-030-43120-4_27
– start-page: 358
  year: 2020
  end-page: 367
  ident: CR28
  article-title: Good pivots for small sparse matrices
  publication-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science
  doi: 10.1007/978-3-030-60026-6_20
– ident: CR33
– start-page: 305
  year: 2018
  end-page: 343
  ident: CR3
  article-title: Satisfiability modulo theories
  publication-title: Handbook of Model Checking
  doi: 10.1007/978-3-319-10575-8_11
– volume: 115
  start-page: 409
  year: 2023
  end-page: 426
  ident: CR4
  article-title: Machine learning the real discriminant locus
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2022.08.001
– ident: CR35
– ident: CR8
– volume: 116
  start-page: 1
  year: 2023
  end-page: 38
  ident: CR1
  article-title: Neurons on amoebae
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2022.08.021
– volume: 5
  start-page: 29
  issue: 1–2
  year: 1988
  end-page: 35
  ident: CR14
  article-title: Real quantifier elimination is doubly exponential
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80004-X
– ident: CR27
– start-page: 19
  year: 2013
  end-page: 34
  ident: CR5
  article-title: Optimising problem formulations for cylindrical algebraic decomposition
  publication-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-39320-4_2
– year: 2013
  ident: CR29
  publication-title: Applied Predictive Modeling
  doi: 10.1007/978-1-4614-6849-3
– start-page: 1
  year: 2012
  end-page: 10
  ident: CR32
  article-title: MetiTarski: past and future
  publication-title: Interactive Theorem Proving. Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-32347-8_1
– start-page: 93
  year: 2019
  end-page: 108
  ident: CR19
  article-title: Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition
  publication-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science
  doi: 10.1007/978-3-030-23250-4_7
– ident: CR38
– ident: CR31
– ident: CR13
– volume: 13
  start-page: 461
  issue: 4
  year: 2019
  end-page: 488
  ident: CR25
  article-title: Using machine learning to improve cylindrical algebraic decomposition
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-019-00394-8
– ident: CR11
– year: 2024
  ident: CR34
  article-title: Explainable AI insights for symbolic computation: a case study on selecting the variable ordering for cylindrical algebraic decomposition
  publication-title: J. Symb. Comput. TBC:TBC
  doi: 10.1016/j.jsc.2023.102276
– ident: CR9
– volume: 32
  start-page: 565
  year: 2008
  end-page: 606
  ident: CR40
  article-title: SATzilla: portfolio-based algorithm selection for SAT
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2490
– volume: 6
  start-page: 60
  issue: 1
  year: 2019
  ident: CR36
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 600
  start-page: 70
  year: 2021
  end-page: 74
  ident: CR15
  article-title: Advancing mathematics by guiding human intuition with AI
  publication-title: Nature
  doi: 10.1038/s41586-021-04086-x
– ident: CR26
– ident: CR24
– volume: 32
  start-page: 447
  issue: 5
  year: 2001
  end-page: 465
  ident: CR7
  article-title: Improved projection for cylindrical algebraic decomposition
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.2001.0463
– volume: 98
  start-page: 84
  year: 2020
  end-page: 119
  ident: CR6
  article-title: Identifying the parametric occurrence of multiple steady states for some biological networks
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2019.07.008
– ident: CR20
– start-page: 297
  year: 2023
  end-page: 302
  ident: CR23
  article-title: An augmented MetiTarski dataset for real quantifier elimination using machine learning
  publication-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science
  doi: 10.1007/978-3-031-42753-4_21
– start-page: 292
  volume-title: Mathematical Software–ICMS 2020. Lecture Notes in Computer Science
  year: 2020
  ident: 591_CR10
  doi: 10.1007/978-3-030-52200-1_29
– ident: 591_CR20
– ident: 591_CR26
  doi: 10.1007/978-3-319-08434-3_8
– start-page: 300
  volume-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science
  year: 2022
  ident: 591_CR17
  doi: 10.1007/978-3-031-14788-3_17
– ident: 591_CR16
– start-page: 297
  volume-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science
  year: 2023
  ident: 591_CR23
  doi: 10.1007/978-3-031-42753-4_21
– start-page: 1
  volume-title: Interactive Theorem Proving. Lecture Notes in Computer Science
  year: 2012
  ident: 591_CR32
  doi: 10.1007/978-3-642-32347-8_1
– volume: 115
  start-page: 409
  year: 2023
  ident: 591_CR4
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2022.08.001
– ident: 591_CR8
– volume: 32
  start-page: 565
  year: 2008
  ident: 591_CR40
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2490
– ident: 591_CR2
  doi: 10.1007/978-3-031-64529-7_18
– start-page: 19
  volume-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science
  year: 2013
  ident: 591_CR5
  doi: 10.1007/978-3-642-39320-4_2
– ident: 591_CR37
  doi: 10.1109/ICMLA.2016.0064
– volume: 13
  start-page: 461
  issue: 4
  year: 2019
  ident: 591_CR25
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-019-00394-8
– volume: 116
  start-page: 1
  year: 2023
  ident: 591_CR1
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2022.08.021
– volume: 600
  start-page: 70
  year: 2021
  ident: 591_CR15
  publication-title: Nature
  doi: 10.1038/s41586-021-04086-x
– ident: 591_CR38
– ident: 591_CR24
  doi: 10.1109/SYNASC.2016.020
– year: 2024
  ident: 591_CR34
  publication-title: J. Symb. Comput. TBC:TBC
  doi: 10.1016/j.jsc.2023.102276
– ident: 591_CR9
  doi: 10.1145/1277548.1277557
– start-page: 305
  volume-title: Handbook of Model Checking
  year: 2018
  ident: 591_CR3
  doi: 10.1007/978-3-319-10575-8_11
– volume: 5
  start-page: 29
  issue: 1–2
  year: 1988
  ident: 591_CR14
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80004-X
– start-page: 93
  volume-title: Intelligent Computer Mathematics. Lecture Notes in Computer Science
  year: 2019
  ident: 591_CR19
  doi: 10.1007/978-3-030-23250-4_7
– ident: 591_CR22
  doi: 10.1145/120694.120701
– volume: 98
  start-page: 84
  year: 2020
  ident: 591_CR6
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2019.07.008
– volume: 6
  start-page: 60
  issue: 1
  year: 2019
  ident: 591_CR36
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: 591_CR13
  doi: 10.1007/3-540-07407-4_17
– ident: 591_CR12
  doi: 10.1007/978-3-030-52200-1_28
– ident: 591_CR27
– ident: 591_CR31
  doi: 10.1145/3452143.3465520
– ident: 591_CR39
  doi: 10.1109/SYNASC.2014.15
– ident: 591_CR11
  doi: 10.1007/978-3-662-44199-2_65
– start-page: 358
  volume-title: Computer Algebra in Scientific Computing. Lecture Notes in Computer Science
  year: 2020
  ident: 591_CR28
  doi: 10.1007/978-3-030-60026-6_20
– ident: 591_CR18
  doi: 10.1145/1005285.1005303
– start-page: 341
  volume-title: Mathematical Aspects of Computer and Information Sciences (Proc. MACIS ’19). Lecture Notes in Computer Science
  year: 2020
  ident: 591_CR21
  doi: 10.1007/978-3-030-43120-4_27
– ident: 591_CR33
– volume: 32
  start-page: 447
  issue: 5
  year: 2001
  ident: 591_CR7
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.2001.0463
– ident: 591_CR30
  doi: 10.48550/ARXIV.1912.01412
– ident: 591_CR35
  doi: 10.1007/978-3-030-72013-1_16
– volume-title: Applied Predictive Modeling
  year: 2013
  ident: 591_CR29
  doi: 10.1007/978-1-4614-6849-3
SSID ssj0062141
Score 2.3244915
Snippet Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output...
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Computer Science
Mathematics
Mathematics and Statistics
Title Lessons on Datasets and Paradigms in Machine Learning for Symbolic Computation: A Case Study on CAD
URI https://link.springer.com/article/10.1007/s11786-024-00591-0
Volume 18
WOSCitedRecordID wos001310159200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8270
  databaseCode: RSV
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADgwFivJQDN4jUNm2ScpsGE4dtmhig3aq8Ou2wDq0Faf-eJG2ZJiEkuEduZMf-XNn-DMCNwbg0TolGHpYChZGiKCZxhBTDnHKshScdiWufDodsMolH1VBYXne71yVJF6nXw24-ZbZhNkR2YtL8BG-DHQN3zC5seB6_1fGXBOW-St8gD2IB9apRmZ9lbMLRZi3UQUyv-b_LHYKDKqWEnfINHIEtnbVAs17XACvvbYH9wTdFa34MZN_EOPPk4CKDD7wwYFbkkGcKjviSq9l0nsNZBgeu11LDioZ1Ck2OC8erubB0wrD8hrPtPezArhECbWPiygo1Nj4Br73Hl-4TqjYuIBkwUiAluKZM-swTvpTMJCMx1ZqnElPuaYIlVQRrjlPBZeSJGCvjwbGKggirlDCMT0EjW2T6DMCQiVCFMk2lrfTJUGhm8JiyiHM_EkS2wW2t-OS9JNZI1hTKVpuJ0WbitJl4bXBX6z2pnCz_5fj5345fgL3Ams716F2CRrH80FdgV34Ws3x57V7XF7Wjybg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurB-sT63IM3XUiySXbjrVRLxbYUq9Jb2FekB1NpotB_726aWAoi6H2ZLDM7802YmW8ALg3GJVESauwQKbAfKIqjMAqwYoRTTrRwZEHi2qX9PhuNokE5FJZV3e5VSbKI1IthN5cy2zDrYzsxaX6CV2HNN4hlGfMfhy9V_A29-b5K1yAPZh51ylGZn2Usw9FyLbSAmHb9f5fbge0ypUTN-RvYhRWd7kG9WteASu_dg63eN0Vrtg-ya2KceXJokqJbnhswyzPEU4UGfMrV-PUtQ-MU9YpeS41KGtZXZHJcNJy9CUsnjObfKGx7g5qoZYQg25g4s0KNjQ_guX331OrgcuMClh4Lc6wE15RJlznClZKZZCSiWvNEEsodHRJJVUg0J4ngMnBERJTx4EgFXkBUEjJCDqGWTlJ9BMhnwle-TBJpK33SF5oZPKYs4NwNRCgbcFUpPn6fE2vECwplq83YaDMutBk7Dbiu9B6XTpb9cvz4b8cvYKPz1OvG3fv-wwlsetaMRb_eKdTy6Yc-g3X5mY-z6Xnx0r4ANKLMnA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalV8uwdvujTJJtmNt1ItirUUfNBb2FdKD43SRKH_3t08fIAI4n2ZhHnszDLffANwanJcEiWhxg6RAvuBojgKowArRjjlRAtHFiSufToYsNEoGn6Z4i_Q7nVLspxpsCxNad5-UUn7c_DNpcyCZ31spyfNg3gRlnwLpLfv9fun-i4OvXJ3pWuyEGYedaqxmZ9lfE9N3_uiRbrpNf__oxuwXpWaqFP6xiYs6LQFzXqNA6qiugVrdx_UrdkWyL65-4wroucUXfLcJLk8QzxVaMhnXE3G0wxNUnRXYDA1quhZx8jUvuh-PhWWZhiV3yhsfoE6qGuEIAtYnFuhxvbb8Ni7euhe42oTA5YeC3OsBNeUSZc5wpWSmSIlolrzRBLKHR0SSVVINCeJ4DJwRESUiexIBV5AVBIyQnagkT6neheQz4SvfJkk0nYApS80M3masoBzNxCh3IOz2gjxS0m4EX9SK1ttxkabcaHN2NmD89oGcRV82S_H9_92_ARWhpe9uH8zuD2AVc9asYDxHUIjn73qI1iWb_kkmx0XTvcOhr7VgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+on+Datasets+and+Paradigms+in+Machine+Learning+for+Symbolic+Computation%3A+A+Case+Study+on+CAD&rft.jtitle=Mathematics+in+computer+science&rft.au=del+R%C3%ADo%2C+Tereso&rft.au=England%2C+Matthew&rft.date=2024-10-01&rft.pub=Springer+International+Publishing&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=18&rft.issue=3&rft_id=info:doi/10.1007%2Fs11786-024-00591-0&rft.externalDocID=10_1007_s11786_024_00591_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon