The point-based robustness gap for uncertain multiobjective optimization

In robust single-objective optimization, the robustness gap is a measure of the distance between the robust optimal objective value and the optimal objective values of the scenarios. While robust multiobjective optimization is a growing field of study, no notion of a robustness gap has been proposed...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 73; číslo 6; s. 1897 - 1931
Hlavní autori: Krüger, Corinna, Schöbel, Anita, Fritzen, Lena, Wiecek, Margaret M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 02.06.2024
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In robust single-objective optimization, the robustness gap is a measure of the distance between the robust optimal objective value and the optimal objective values of the scenarios. While robust multiobjective optimization is a growing field of study, no notion of a robustness gap has been proposed. A concept of a point-based robustness gap for uncertain multiobjective optimization problems is introduced. The gap is defined as the minimal distance between the robust Pareto set and the Pareto sets of the scenarios. It is shown that the gap is zero whenever the uncertainty is constraint-wise and objective-wise, supplementing a major result about the single-objective robustness gap. Because the distance between Pareto sets is hard to compute, lower and upper bounds on the gap are constructed for convex problems. Specific results about the zero gap and the bounds are presented for linear problems. Numerical examples are included.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2023.2181080