Modelling recall-based competing risks data with k different models

In competing risks model, subjects are exposed to failure due to more than one cause. In this study, we develop a model for recall-based competing risks data when the causes associated with time to event are assumed to follow different distributions respectively. The chances of an individual recalli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation Jg. 94; H. 4; S. 722 - 743
Hauptverfasser: Panwar, M. S., Yadav, C. P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 03.03.2024
Taylor & Francis Ltd
Schlagworte:
ISSN:0094-9655, 1563-5163
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In competing risks model, subjects are exposed to failure due to more than one cause. In this study, we develop a model for recall-based competing risks data when the causes associated with time to event are assumed to follow different distributions respectively. The chances of an individual recalling an event will be high if elapsed time between monitoring time and time to event is less. This information is utilized by taking non-recall probability as a function of this elapsed time. For point estimation, an expectation-maximization based algorithm is developed. For interval estimation, we construct the observed Fisher information matrix by using the missing information principle. The study is further extended to the Bayesian paradigm under suitable choices of prior distributions. The samples from full conditionals are drawn using a Gibbs sampling-based algorithm. To assess the performance of proposed estimators, an extensive simulation study is carried out for different proportions of non-recall and censored data with varying sample sizes under uniform and exponential monitoring patterns. Finally, the median duration of breastfeeding cessation for US women is estimated.
AbstractList In competing risks model, subjects are exposed to failure due to more than one cause. In this study, we develop a model for recall-based competing risks data when the causes associated with time to event are assumed to follow different distributions respectively. The chances of an individual recalling an event will be high if elapsed time between monitoring time and time to event is less. This information is utilized by taking non-recall probability as a function of this elapsed time. For point estimation, an expectation-maximization based algorithm is developed. For interval estimation, we construct the observed Fisher information matrix by using the missing information principle. The study is further extended to the Bayesian paradigm under suitable choices of prior distributions. The samples from full conditionals are drawn using a Gibbs sampling-based algorithm. To assess the performance of proposed estimators, an extensive simulation study is carried out for different proportions of non-recall and censored data with varying sample sizes under uniform and exponential monitoring patterns. Finally, the median duration of breastfeeding cessation for US women is estimated.
Author Panwar, M. S.
Yadav, C. P.
Author_xml – sequence: 1
  givenname: M. S.
  surname: Panwar
  fullname: Panwar, M. S.
  organization: Banaras Hindu University
– sequence: 2
  givenname: C. P.
  surname: Yadav
  fullname: Yadav, C. P.
  email: chandraprakashy29@gmail.com
  organization: National University of Singapore
BookMark eNp9kMtKw0AUhgepYFt9BCHgOnEumelkpxRvUHGj6-HMTdMmmTqTUvr2JrZuXR04fP9_ON8MTbrQOYSuCS4IlvgW46qsBOcFxZQVlC4o44szNCVcsJwTwSZoOjL5CF2gWUprjDEhnE7R8jVY1zR195lFZ6Bpcg3J2cyEduv633WdNimz0EO2r_uvbJPZ2nsXXddn7RhOl-jcQ5Pc1WnO0cfjw_vyOV-9Pb0s71e5oVL0uaVE6spbrjkzVksQGLB0FkAYKcBg6RlI4hcetCwdOEK51tJbq4WW3LE5ujn2bmP43rnUq3XYxW44qWjFGB3eK8uB4kfKxJBSdF5tY91CPCiC1ehL_flSoy918jXk7o65uvMhtrAPsbGqh0MToo_QmTop9n_FDwXpdI4
Cites_doi 10.1080/02664763.2018.1561833
10.1016/j.ress.2005.12.010
10.1093/biomet/asq083
10.2307/2530599
10.1016/S0169-7161(03)23035-2
10.1109/TR.2016.2575439
10.1109/24.814520
10.1080/00949655.2011.590808
10.1007/s13571-018-0172-3
10.1016/j.cam.2019.112537
10.1109/24.9880
10.1109/TR.24
10.1109/IRI-05.2005.1506479
10.1007/BF00128570
10.1007/s10985-006-9019-8
10.1201/9781420035902
10.1007/978-1-4684-6316-3_8
10.1111/j.1651-2227.2003.tb00501.x
10.1007/0-387-37119-2
10.1111/j.2517-6161.1977.tb01600.x
10.1142/S0218539397000035
10.1111/sjos.v42.1
10.1093/oxfordjournals.aje.a113548
10.1007/s13198-013-0191-4
10.1016/S0167-7152(99)00160-1
10.1080/02664763.2022.2052821
10.1080/01621459.1980.10477495
10.2307/2061354
10.1016/j.ress.2015.07.007
10.1111/j.2517-6161.1982.tb01203.x
10.1016/S0951-8320(03)00125-X
10.1080/10618600.1999.10474802
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2023.2272357
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 743
ExternalDocumentID 10_1080_00949655_2023_2272357
2272357
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-d218b9fd5b53cdb8a60a08edaa6c86ac08f3a81f7fab84eae125bb8fddb6b85e3
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091395700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-9655
IngestDate Tue Aug 12 16:41:17 EDT 2025
Sat Nov 29 06:28:01 EST 2025
Mon Oct 20 23:48:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-d218b9fd5b53cdb8a60a08edaa6c86ac08f3a81f7fab84eae125bb8fddb6b85e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2933296544
PQPubID 53118
PageCount 22
ParticipantIDs proquest_journals_2933296544
informaworld_taylorfrancis_310_1080_00949655_2023_2272357
crossref_primary_10_1080_00949655_2023_2272357
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
Dempster AP (e_1_3_3_31_1) 1977; 39
David HA (e_1_3_3_8_1) 1978
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_11_1
e_1_3_3_32_1
Gupta A (e_1_3_3_27_1) 2018; 13
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_28_1
Louis TA. (e_1_3_3_34_1) 1982; 44
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_19_1
  doi: 10.1080/02664763.2018.1561833
– ident: e_1_3_3_32_1
  doi: 10.1016/j.ress.2005.12.010
– ident: e_1_3_3_15_1
  doi: 10.1093/biomet/asq083
– ident: e_1_3_3_6_1
  doi: 10.2307/2530599
– ident: e_1_3_3_3_1
  doi: 10.1016/S0169-7161(03)23035-2
– ident: e_1_3_3_26_1
  doi: 10.1109/TR.2016.2575439
– ident: e_1_3_3_23_1
  doi: 10.1109/24.814520
– ident: e_1_3_3_35_1
  doi: 10.1080/00949655.2011.590808
– ident: e_1_3_3_17_1
  doi: 10.1007/s13571-018-0172-3
– volume: 13
  start-page: 9
  issue: 3
  year: 2018
  ident: e_1_3_3_27_1
  article-title: Classical and Bayes analysis of a competing risk model based on two Weibull distributions with increasing and decreasing hazards
  publication-title: Reliab Theory Appl
– ident: e_1_3_3_29_1
  doi: 10.1016/j.cam.2019.112537
– ident: e_1_3_3_10_1
  doi: 10.1109/24.9880
– ident: e_1_3_3_33_1
  doi: 10.1109/TR.24
– ident: e_1_3_3_28_1
  doi: 10.1109/IRI-05.2005.1506479
– ident: e_1_3_3_16_1
– ident: e_1_3_3_14_1
  doi: 10.1007/BF00128570
– ident: e_1_3_3_24_1
  doi: 10.1007/s10985-006-9019-8
– ident: e_1_3_3_9_1
  doi: 10.1201/9781420035902
– ident: e_1_3_3_4_1
  doi: 10.1007/978-1-4684-6316-3_8
– ident: e_1_3_3_18_1
– ident: e_1_3_3_37_1
  doi: 10.1111/j.1651-2227.2003.tb00501.x
– ident: e_1_3_3_5_1
  doi: 10.1007/0-387-37119-2
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: e_1_3_3_31_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_3_3_22_1
  doi: 10.1142/S0218539397000035
– ident: e_1_3_3_7_1
  doi: 10.1111/sjos.v42.1
– ident: e_1_3_3_13_1
  doi: 10.1093/oxfordjournals.aje.a113548
– ident: e_1_3_3_12_1
  doi: 10.1007/s13198-013-0191-4
– ident: e_1_3_3_30_1
  doi: 10.1016/S0167-7152(99)00160-1
– ident: e_1_3_3_20_1
  doi: 10.1080/02664763.2022.2052821
– ident: e_1_3_3_21_1
  doi: 10.1080/01621459.1980.10477495
– volume-title: The theory of competing risks
  year: 1978
  ident: e_1_3_3_8_1
– ident: e_1_3_3_2_1
  doi: 10.2307/2061354
– ident: e_1_3_3_25_1
  doi: 10.1016/j.ress.2015.07.007
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  ident: e_1_3_3_34_1
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_3_3_11_1
  doi: 10.1016/S0951-8320(03)00125-X
– ident: e_1_3_3_36_1
  doi: 10.1080/10618600.1999.10474802
SSID ssj0001152
Score 2.330202
Snippet In competing risks model, subjects are exposed to failure due to more than one cause. In this study, we develop a model for recall-based competing risks data...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 722
SubjectTerms Algorithms
Bayesian inference
data augmentation approach
duration of breastfeeding
expectation-maximization algorithm
Fisher information
Fisher information matrix
Monitoring
Recall
Recall-based data
Title Modelling recall-based competing risks data with k different models
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2023.2272357
https://www.proquest.com/docview/2933296544
Volume 94
WOSCitedRecordID wos001091395700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis (UCD Library purchased years)
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: TFW
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGH6R4WEenE7F6ZQcvGa2S5qmRxkOLw4PE3cL-QTZmLJWf79J2g5FxIMeW5pQ8n49Td4-D8AV8ZBa2cRiyVIWjhkZls6luCh0Tj3cdVTxKDaRz2Z8sSgemm7CsmmrDN_QriaKiLk6BLdUZdsRdx264QqWZaMg_T0aj_NA2eKzsC_9ITTn06dtLk5rzZ0wAoch7T88P83ypTp94S79lqtjAZr2_uHVD2C_QZ_opnaXQ9ix6z70WmUH1AR6H_but2yuZR-6AZHWhM5HMAnqaZHIG_lkKVcrHAqhQToC8Hj7uVyWKLSeorDLi5aoVWGpUBTeKY_hcXo7n9zhRokB6zFnFTYeCKjCmUxlRBvFJUtkwq2RkmnOpE64I5KnLndScWql9bBJKe6MUUzxzJIT6Kxf1vYUEHEeEFgPGgpjqSWZdFQnTGtGcu39xg5g1FpAvNaEGyLd8pjWqyfC6olm9QZQfLaTqOJOh6tlSQT5ZeywNapoYrcUHgCRsX-U0rM_TH0OXX9JY7saGUKn2rzZC9jV795em8vopR_g2eQt
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xkoCBRwFRnh5YU5I4cZwRISoQtFMR3SzbsSVEVVAT-P34nKQqQogB1iS2orvz3Rfn_H0AF9RBamVCE0gWMfzNyAJpbRTkuc4SB3dtorgXm8iGQz4e54tnYbCtEr-hbU0U4XM1Lm7cjG5b4i6xHS5nadpD7e9eHGfI2bIMq6mrtcifP-o_zbNxVKvu4JAAx7SneH6a5kt9-sJe-i1b-xLU3_6Pl9-BrQaAkqs6YnZhyUw7sN2KO5BmrXdgczAndC07sIGgtOZ03oNrFFDzXN7E5Us5mQRYCwuiPQb3l5_Ll5Jg9ynBjV7yQlohlop47Z1yHx77N6Pr26ARYwh0zFkVFA4LqNwWqUqpLhSXLJQhN4WUTHMmdcgtlTyymZWKJ0Yah5yU4rYoFFM8NfQAVqavU3MIhFqHCYzDDXlhEkNTaRMdMq0ZzbQLHdOFXusC8VZzbohoTmVaW0-g9URjvS7ki44Sld_ssLUyiaC_jD1pvSqa5VsKh4Fo7B5NkqM_TH0O67ejwYN4uBveH8OGu5X47jV6AivV7N2cwpr-cL6bnfmQ_QRexOhX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BQagMFAqI8umBNSWpE8cZUaECAVWHIrpZ_pRQq1I1hd-P7SQVFUIMsCaxFd2d717sy3sAl9hCaqFDHXASEXfMSAJuTBRkmUxjC3dNLKgXm0j7fToaZYOymzAv2yrdN7QpiCJ8rnaLe6ZM1RF35brhMpIkbSf93e50UkfZsg4bFjoTF-TD3ssyGUeF6I4bErgx1U88P02zUp5WyEu_JWtfgXqNf3j3Xdgp4Se6LuJlD9b0tAmNStoBlSu9CdtPSzrXvAl1B0kLRud96Dr5NM_kjWy25JNJ4CqhQtIjcH_5NR_nyPWeIrfNi8aokmFZIK-8kx_Ac-922L0LSimGQHYoWQTKIgGRGZWIBEslKCchD6lWnBNJCZchNZjTyKSGCxprri1uEoIapQQRNNH4EGrTt6k-AoSNRQTaooZM6VjjhJtYhkRKglNpA0e3oF15gM0Kxg0WLYlMC-sxZz1WWq8F2Vc_sYXf6jCFLgnDv4w9rZzKysWbM4uAcMc-GsfHf5j6ArYGNz32eN9_OIG6vRP71jV8CrXF_F2fwab8sK6bn_uA_QSzQecJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+recall-based+competing+risks+data+with+k+different+models&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Panwar%2C+M+S&rft.au=Yadav%2C+C+P&rft.date=2024-03-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=94&rft.issue=4&rft.spage=722&rft.epage=743&rft_id=info:doi/10.1080%2F00949655.2023.2272357&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon