Unitary Highest Weight Representations in Hilbert Spaces of Holomorphic Functions on Infinite Dimensional Domains

Automorphism groups of symmetric domains in Hilbert spaces form a natural class of infinite dimensional Lie algebras and corresponding Banach Lie groups. We give a classification of the algebraic category of unitary highest weight modules for such Lie algebras and show that infinite dimensional vers...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of functional analysis Ročník 156; číslo 1; s. 263 - 300
Hlavní autori: Neeb, Karl-Hermann, Ørsted, Bent
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 20.06.1998
ISSN:0022-1236, 1096-0783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Automorphism groups of symmetric domains in Hilbert spaces form a natural class of infinite dimensional Lie algebras and corresponding Banach Lie groups. We give a classification of the algebraic category of unitary highest weight modules for such Lie algebras and show that infinite dimensional versions of the Lie algebras so(2,n) have no unitary highest weight representations and thus do not meet the physical requirement of having positive energy. Highest weight modules correspond to unitary representations of global Banach Lie groups realized in Hilbert spaces of vector valued holomorphic functions on the relevant domains in Hilbert spaces. The construction of such holomorphic representations of certain Banach Lie groups, followed by the application of the general framework of Harish-Chandra type groups in an appropriate Banach setting, leads to the integration of the Lie algebra representation to a group representation. The extension of this theory to infinite dimensional settings is explored.
AbstractList Automorphism groups of symmetric domains in Hilbert spaces form a natural class of infinite dimensional Lie algebras and corresponding Banach Lie groups. We give a classification of the algebraic category of unitary highest weight modules for such Lie algebras and show that infinite dimensional versions of the Lie algebras so(2,n) have no unitary highest weight representations and thus do not meet the physical requirement of having positive energy. Highest weight modules correspond to unitary representations of global Banach Lie groups realized in Hilbert spaces of vector valued holomorphic functions on the relevant domains in Hilbert spaces. The construction of such holomorphic representations of certain Banach Lie groups, followed by the application of the general framework of Harish-Chandra type groups in an appropriate Banach setting, leads to the integration of the Lie algebra representation to a group representation. The extension of this theory to infinite dimensional settings is explored.
Author Neeb, Karl-Hermann
Ørsted, Bent
Author_xml – sequence: 1
  givenname: Karl-Hermann
  surname: Neeb
  fullname: Neeb, Karl-Hermann
  organization: Mathematisches Institut, Universität Erlangen–Nürnberg, Bismarckstrasse, 112, D-91054, Erlangen, Germany
– sequence: 2
  givenname: Bent
  surname: Ørsted
  fullname: Ørsted, Bent
  organization: Mathematisk Institut, Odense Universitet, Campusvej, 55, DK-5230, Odense, Denmark
BookMark eNp1kF1LwzAUhoNMcFNvvc4faM1H17SXsjk3GAjq8LKk6YnLaJOaRMF_b0u9EnZ1Di_nOfA-CzSzzgJCd5SklJD8_qSlTWlZipQzzi_QnJIyT4go-AzNCWEsoYznV2gRwokQSvNsOUefB2ui9D94az6OECJ-h2GJ-AV6DwFslNE4G7Cxw0Vbg4_4tZcKAnYab13rOuf7o1F482XVdOos3llthr-A16YDG4ZYtnjtOmlsuEGXWrYBbv_mNTpsHt9W22T__LRbPewTxYo8JkqVpaY1K5dU6oIzKTjUrNGKkWypSQNiiAqRKyG1yGpZCEG1lKJmOddEaH6Nsumv8i4ED7pSZmoTvTRtRUk1aqtGbdWorRq1DVj6D-u96QZD54FiAmAo823AV0EZsAoa40HFqnHmHPoLlpuIMg
CitedBy_id crossref_primary_10_1016_j_jfa_2010_07_020
crossref_primary_10_1515_crll_2001_025
crossref_primary_10_1016_j_jfa_2013_10_030
crossref_primary_10_1006_jabr_1999_7978
crossref_primary_10_1515_FORUM_2009_018
crossref_primary_10_1007_s00208_022_02531_4
crossref_primary_10_1006_jfan_2001_3884
crossref_primary_10_1142_S1793744210000132
Cites_doi 10.1007/BF01465868
10.1090/S0002-9947-1972-0296359-6
10.1006/jabr.1994.1173
10.1070/IM1975v009n02ABEH001480
10.1016/0022-1236(80)90106-8
10.1007/BF02392042
ContentType Journal Article
Copyright 1998 Academic Press
Copyright_xml – notice: 1998 Academic Press
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1006/jfan.1997.3233
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0783
EndPage 300
ExternalDocumentID 10_1006_jfan_1997_3233
S002212369793233X
GroupedDBID --K
--M
--Z
-ET
-~X
.~1
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABTAH
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
OAUVE
OK1
OZT
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
0R~
6TJ
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
G-2
GBLVA
HZ~
O9-
OHT
P-8
SEW
WUQ
XOL
~HD
ID FETCH-LOGICAL-c286t-cc99f1b2951af832a73eb2dfc2045f0de72a7876c7af74ba8771faa7b263f07f3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000075147300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1236
IngestDate Tue Nov 18 22:35:09 EST 2025
Sat Nov 29 06:26:43 EST 2025
Fri Feb 23 02:20:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-cc99f1b2951af832a73eb2dfc2045f0de72a7876c7af74ba8771faa7b263f07f3
OpenAccessLink https://dx.doi.org/10.1006/jfan.1997.3233
PageCount 38
ParticipantIDs crossref_citationtrail_10_1006_jfan_1997_3233
crossref_primary_10_1006_jfan_1997_3233
elsevier_sciencedirect_doi_10_1006_jfan_1997_3233
PublicationCentury 1900
PublicationDate 1998-06-20
PublicationDateYYYYMMDD 1998-06-20
PublicationDate_xml – month: 06
  year: 1998
  text: 1998-06-20
  day: 20
PublicationDecade 1990
PublicationTitle Journal of functional analysis
PublicationYear 1998
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Enright, Howe, Wallach (FU973233RF3) 1983; 40
Natarajan (FU973233RF8) 1994; 167
Satake (FU973233RF18) 1980; 14
Yamasaki (FU973233RF24) 1985; 5
Upmeier (FU973233RF23) 1987; 67
Greenfield, Wallach (FU973233RF4) 1972; 166
K.-H. Neeb, B. Ørsted, Representations in
J. Hilgert, K.-H. Neeb, Riesz distributions associated to Euclidian Jordan algebras
K.-H. Neeb, Holomorphy and Convexity in Lie Theory
Pressley, Segal (FU973233RF16) 1986
Segal (FU973233RF19) 1973
1977
Kaup (FU973233RF7) 1981; 257
Berezin (FU973233RF2) 1974; 9
K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. Reine Angew. Math.
Hervé (FU973233RF5) 1989
Rossi, Vergne (FU973233RF17) 1976; 136
Upmeier (FU973233RF22) 1986
K.-H. Neeb, B. Ørsted, Hardy spaces in an infinite dimensional setting, Clausthal Proceedings, Odense Univ.
Baez, Segal, Zhou (FU973233RF1) 1992
Ørsted (FU973233RF15) 1980; 36
Shereshevskii (FU973233RF20) 1977; 32
Y. Neretin, G. I. Ol'shanskiı Boundary values of holomorphic functions, singular unitary representations of
Ol'shanskiı (FU973233RF14) 1988; 22:4
Upmeier (FU973233RF21) 1985
Upmeier (10.1006/jfan.1997.3233_FU973233RF23) 1987; 67
Greenfield (10.1006/jfan.1997.3233_FU973233RF4) 1972; 166
Hervé (10.1006/jfan.1997.3233_FU973233RF5) 1989
Upmeier (10.1006/jfan.1997.3233_FU973233RF21) 1985
Berezin (10.1006/jfan.1997.3233_FU973233RF2) 1974; 9
Rossi (10.1006/jfan.1997.3233_FU973233RF17) 1976; 136
Yamasaki (10.1006/jfan.1997.3233_FU973233RF24) 1985; 5
10.1006/jfan.1997.3233_FU973233RF6
10.1006/jfan.1997.3233_FU973233RF9
Upmeier (10.1006/jfan.1997.3233_FU973233RF22) 1986
Kaup (10.1006/jfan.1997.3233_FU973233RF7) 1981; 257
Natarajan (10.1006/jfan.1997.3233_FU973233RF8) 1994; 167
Satake (10.1006/jfan.1997.3233_FU973233RF18) 1980; 14
10.1006/jfan.1997.3233_FU973233RF13
10.1006/jfan.1997.3233_FU973233RF12
Segal (10.1006/jfan.1997.3233_FU973233RF19) 1973
Shereshevskii (10.1006/jfan.1997.3233_FU973233RF20) 1977; 32
10.1006/jfan.1997.3233_FU973233RF11
Ol'shanskiı (10.1006/jfan.1997.3233_FU973233RF14) 1988; 22:4
Baez (10.1006/jfan.1997.3233_FU973233RF1) 1992
10.1006/jfan.1997.3233_FU973233RF10
Ørsted (10.1006/jfan.1997.3233_FU973233RF15) 1980; 36
Enright (10.1006/jfan.1997.3233_FU973233RF3) 1983; 40
Pressley (10.1006/jfan.1997.3233_FU973233RF16) 1986
References_xml – reference: K.-H. Neeb, B. Ørsted, Hardy spaces in an infinite dimensional setting, Clausthal Proceedings, Odense Univ.
– volume: 22:4
  start-page: 273
  year: 1988
  end-page: 285
  ident: FU973233RF14
  article-title: Method of holomorphic extension in the theory of unitary representations of infinite dimensional classical groups
  publication-title: Funct. Anal. Appl.
– volume: 136
  start-page: 1
  year: 1976
  end-page: 59
  ident: FU973233RF17
  article-title: Analytic continuation of the holomorphic discrete series of a semisimple Lie group
  publication-title: Acta Math.
– reference: J. Hilgert, K.-H. Neeb, Riesz distributions associated to Euclidian Jordan algebras
– reference: Y. Neretin, G. I. Ol'shanskiı Boundary values of holomorphic functions, singular unitary representations of
– volume: 14
  year: 1980
  ident: FU973233RF18
  publication-title: Algebraic Structures of Symmetric Domains
– volume: 257
  start-page: 463
  year: 1981
  end-page: 486
  ident: FU973233RF7
  article-title: Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II
  publication-title: Math. Ann.
– reference: , 1977
– year: 1973
  ident: FU973233RF19
  article-title: The complex wave representation of the free boson field
  publication-title: Topics in Funct. Anal., Adv. in Math. Suppl. Stud.
– year: 1992
  ident: FU973233RF1
  publication-title: Introduction to Algebraic and Constructive Quantum Field Theory
– volume: 40
  year: 1983
  ident: FU973233RF3
  article-title: A classification of unitary highest weight modules
  publication-title: Proc. ‘Representation Theory of Reductive Groups' (Park City, UT, 1982)
– year: 1986
  ident: FU973233RF22
  article-title: Some applications of infinite-dimensional holomorphy to mathematical physics
  publication-title: Aspects of Mathematics and its Applications
– volume: 166
  start-page: 45
  year: 1972
  end-page: 57
  ident: FU973233RF4
  article-title: Automorphism groups in banach spaces
  publication-title: Trans. Amer. Math. Soc.
– year: 1986
  ident: FU973233RF16
  publication-title: Loop Groups
– year: 1985
  ident: FU973233RF21
  publication-title: Symmetric Banach Manifolds and Jordan
– reference: K.-H. Neeb, Holomorphy and Convexity in Lie Theory
– year: 1989
  ident: FU973233RF5
  publication-title: Analyticity in Infinite Dimensional Spaces
– reference: K.-H. Neeb, B. Ørsted, Representations in
– volume: 67
  year: 1987
  ident: FU973233RF23
  publication-title: Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics
– volume: 9
  start-page: 341
  year: 1974
  end-page: 379
  ident: FU973233RF2
  article-title: Quantization in complex symmetric spaces
  publication-title: Math. USSR–Izv
– volume: 5
  year: 1985
  ident: FU973233RF24
  publication-title: Measures on infinite dimensional spaces
– volume: 36
  start-page: 53
  year: 1980
  end-page: 71
  ident: FU973233RF15
  article-title: A model for an interacting quantum field
  publication-title: J. Funct. Anal.
– volume: 32
  start-page: 28
  year: 1977
  end-page: 36
  ident: FU973233RF20
  article-title: Quantization based on infinite-dimensional hermitian symmetric spaces
  publication-title: Moscow Univ. Math. Bull.
– volume: 167
  start-page: 9
  year: 1994
  end-page: 28
  ident: FU973233RF8
  article-title: Unitary highest weight-modules of inductive limit Lie algebras and groups
  publication-title: J. Algebra
– reference: K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. Reine Angew. Math.
– volume: 257
  start-page: 463
  year: 1981
  ident: 10.1006/jfan.1997.3233_FU973233RF7
  article-title: Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II
  publication-title: Math. Ann.
  doi: 10.1007/BF01465868
– volume: 32
  start-page: 28
  year: 1977
  ident: 10.1006/jfan.1997.3233_FU973233RF20
  article-title: Quantization based on infinite-dimensional hermitian symmetric spaces
  publication-title: Moscow Univ. Math. Bull.
– year: 1989
  ident: 10.1006/jfan.1997.3233_FU973233RF5
– year: 1973
  ident: 10.1006/jfan.1997.3233_FU973233RF19
  article-title: The complex wave representation of the free boson field
– year: 1986
  ident: 10.1006/jfan.1997.3233_FU973233RF16
– volume: 166
  start-page: 45
  year: 1972
  ident: 10.1006/jfan.1997.3233_FU973233RF4
  article-title: Automorphism groups in banach spaces
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1972-0296359-6
– volume: 167
  start-page: 9
  year: 1994
  ident: 10.1006/jfan.1997.3233_FU973233RF8
  article-title: Unitary highest weight-modules of inductive limit Lie algebras and groups
  publication-title: J. Algebra
  doi: 10.1006/jabr.1994.1173
– year: 1992
  ident: 10.1006/jfan.1997.3233_FU973233RF1
– volume: 14
  year: 1980
  ident: 10.1006/jfan.1997.3233_FU973233RF18
– volume: 9
  start-page: 341
  year: 1974
  ident: 10.1006/jfan.1997.3233_FU973233RF2
  article-title: Quantization in complex symmetric spaces
  publication-title: Math. USSR–Izv
  doi: 10.1070/IM1975v009n02ABEH001480
– volume: 36
  start-page: 53
  year: 1980
  ident: 10.1006/jfan.1997.3233_FU973233RF15
  article-title: A model for an interacting quantum field
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(80)90106-8
– ident: 10.1006/jfan.1997.3233_FU973233RF10
– volume: 67
  year: 1987
  ident: 10.1006/jfan.1997.3233_FU973233RF23
– ident: 10.1006/jfan.1997.3233_FU973233RF11
– ident: 10.1006/jfan.1997.3233_FU973233RF9
– year: 1985
  ident: 10.1006/jfan.1997.3233_FU973233RF21
– volume: 40
  year: 1983
  ident: 10.1006/jfan.1997.3233_FU973233RF3
  article-title: A classification of unitary highest weight modules
– ident: 10.1006/jfan.1997.3233_FU973233RF13
– year: 1986
  ident: 10.1006/jfan.1997.3233_FU973233RF22
  article-title: Some applications of infinite-dimensional holomorphy to mathematical physics
– ident: 10.1006/jfan.1997.3233_FU973233RF12
– ident: 10.1006/jfan.1997.3233_FU973233RF6
– volume: 136
  start-page: 1
  year: 1976
  ident: 10.1006/jfan.1997.3233_FU973233RF17
  article-title: Analytic continuation of the holomorphic discrete series of a semisimple Lie group
  publication-title: Acta Math.
  doi: 10.1007/BF02392042
– volume: 22:4
  start-page: 273
  year: 1988
  ident: 10.1006/jfan.1997.3233_FU973233RF14
  article-title: Method of holomorphic extension in the theory of unitary representations of infinite dimensional classical groups
  publication-title: Funct. Anal. Appl.
– volume: 5
  year: 1985
  ident: 10.1006/jfan.1997.3233_FU973233RF24
SSID ssj0011645
Score 1.5853174
Snippet Automorphism groups of symmetric domains in Hilbert spaces form a natural class of infinite dimensional Lie algebras and corresponding Banach Lie groups. We...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 263
Title Unitary Highest Weight Representations in Hilbert Spaces of Holomorphic Functions on Infinite Dimensional Domains
URI https://dx.doi.org/10.1006/jfan.1997.3233
Volume 156
WOSCitedRecordID wos000075147300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0783
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011645
  issn: 0022-1236
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8oPGlDRjyAxIPlSGJmzh-HPtQQTAhMaBvkePYUqQ2KW2Y9jfwV3MXO0nLmARIvESVZSfS3a935_Pdz4S8iG2c2kBzpvMJbFB4FLMUjCArILo3CecibNn5v7wX5-fpbCY_jkY_ul6Yy7moqvTqSi7_q6phDJSNrbN_oe7-pTAAv0Hp8AS1w_OPFI9RJJbCtRUc62b8tU1-YqQ9dBq56vFpiQRXzfjTsq3LwpQ-mMJFDaIv9fgMPJ4vk8PEoS0xOgUTucCS9zZ_eFIvVOmzfdfjW-vXt2QEjvlkyDyb3HeizdkUfUPVYxRP7mW66rKwb7rCnGJo1UtYFAzpsq5lZquis20fQMoX54Cc1Q2wElq4G216s-wIx7fw542sN4nOX_OW6fS6KwBzgq7Aqgo7MsUrHnE-OL2-FBFPq9F9JxIsFUyZ3SK7kYglWMjdo7ens3f9mRRsLOOOex4XdBSgQfJ6-yu_D3E2wpaLPXLP64MeOZzcJyNTPSB3P_RkveuH5JtHDPWIoQ4x9BfE0LKiHjHUIYbWlm4ghvaIoXVFO8TQDcRQj5hH5PPZ6cXxlPmbOJiO0qRhWktpwzyCcFxZ8AFKcJNHhdV4mYENCiNgCPyqFsqKSa5SIUKrlMhBVTYQlj8mO1VdmX1Cg8DAFluGeajxkuhcxSYyokj5JEk0l_aAsE54mfY09XhbyjxzBNtJhsLOUNgZCvuAvOznLx1By40zw04XmQ8vXdiYAWRuWPPkH9Y8JXeGf8MzstOsvptDcltfNuV69dyj6iex26AG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unitary+Highest+Weight+Representations+in+Hilbert+Spaces+of+Holomorphic+Functions+on+Infinite+Dimensional+Domains&rft.jtitle=Journal+of+functional+analysis&rft.au=Neeb%2C+Karl-Hermann&rft.au=%C3%98rsted%2C+Bent&rft.date=1998-06-20&rft.pub=Elsevier+Inc&rft.issn=0022-1236&rft.eissn=1096-0783&rft.volume=156&rft.issue=1&rft.spage=263&rft.epage=300&rft_id=info:doi/10.1006%2Fjfan.1997.3233&rft.externalDocID=S002212369793233X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon