A majorization–minimization-based method for nonconvex inverse rig problems in facial animation: algorithm derivation
Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of controllers, and a manual approach is painfully slow. Different solutions have been proposed that produce output in real-time or generalize well for dif...
Saved in:
| Published in: | Optimization letters Vol. 18; no. 2; pp. 545 - 559 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
|
| Subjects: | |
| ISSN: | 1862-4472, 1862-4480 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of controllers, and a manual approach is painfully slow. Different solutions have been proposed that produce output in real-time or generalize well for different face topologies. However, all these prior works consider a linear approximation of the blendshape function and hence do not provide a high-enough level of detail for modern realistic human face reconstruction. A second-order blendshape approximation leads to higher fidelity facial animation but generates a non-linear least squares optimization problem with high dimensionality. We derive a method for solving the inverse rig in blendshape animation using quadratic corrective terms, which increases accuracy. At the same time, due to the proposed construction of the objective function, it yields a sparser estimated weight vector compared to the state-of-the-art methods. The former feature means lower demand for subsequent manual corrections of the solution, while the latter indicates that the manual modifications are also easier to include. Our algorithm is iterative and employs a Majorization–Minimization paradigm to cope with the increased complexity produced by adding corrective terms. The surrogate function is easy to solve and allows for further parallelization on the component level within each iteration. This paper is complementary to an accompanying paper (Racković et al. arxiv preprint.
https://arxiv.org/abs/2302.04843
, 2023) where we provide detailed experimental results and discussion, including highly-realistic animation data, and show a clear superiority of the results compared to the state-of-the-art methods. |
|---|---|
| AbstractList | Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of controllers, and a manual approach is painfully slow. Different solutions have been proposed that produce output in real-time or generalize well for different face topologies. However, all these prior works consider a linear approximation of the blendshape function and hence do not provide a high-enough level of detail for modern realistic human face reconstruction. A second-order blendshape approximation leads to higher fidelity facial animation but generates a non-linear least squares optimization problem with high dimensionality. We derive a method for solving the inverse rig in blendshape animation using quadratic corrective terms, which increases accuracy. At the same time, due to the proposed construction of the objective function, it yields a sparser estimated weight vector compared to the state-of-the-art methods. The former feature means lower demand for subsequent manual corrections of the solution, while the latter indicates that the manual modifications are also easier to include. Our algorithm is iterative and employs a Majorization–Minimization paradigm to cope with the increased complexity produced by adding corrective terms. The surrogate function is easy to solve and allows for further parallelization on the component level within each iteration. This paper is complementary to an accompanying paper (Racković et al. arxiv preprint.
https://arxiv.org/abs/2302.04843
, 2023) where we provide detailed experimental results and discussion, including highly-realistic animation data, and show a clear superiority of the results compared to the state-of-the-art methods. |
| Author | Jakovetić, Dušan Racković, Stevo Soares, Cláudia Desnica, Zoranka |
| Author_xml | – sequence: 1 givenname: Stevo orcidid: 0000-0002-5656-9189 surname: Racković fullname: Racković, Stevo email: stevo.rackovic@tecnico.ulisboa.pt organization: Institute for Systems and Robotics, Instituto Superior Técnico – sequence: 2 givenname: Cláudia orcidid: 0000-0003-3071-6627 surname: Soares fullname: Soares, Cláudia organization: Computer Science Department, NOVA School of Science and Technology – sequence: 3 givenname: Dušan orcidid: 0000-0003-3497-5589 surname: Jakovetić fullname: Jakovetić, Dušan organization: Department of Mathematics, Faculty of Sciences, University of Novi Sad – sequence: 4 givenname: Zoranka surname: Desnica fullname: Desnica, Zoranka organization: 3Lateral Animation Studio, Epic Games Company |
| BookMark | eNp9UEtOwzAQtVCRaAsXYOULGPxJnJhdVfGTKrGBteU4dusqsSs7tMCKO3BDToJpK5Ys5qt5b2beBIx88AaAS4KvCMbVdSKkFBhhyrJhQtHuBIxJzSkqihqP_vKKnoFJSmuMOSFCjMFuBnu1DtF9qMEF__351Tvv-mOJGpVMC3szrEILbYgw79XBb80bdNnHZGB0S7iJoelMn3ITWqWd6qDKLHuOG6i6ZV4wrHrYmui2--45OLWqS-biGKfg5e72ef6AFk_3j_PZAmla8wFpJXhbYqstrQUvSSUs5y3ltNGsFflTKwSlhuGy0RWnrC51xQpKK0YwK4VlU0APvDqGlKKxchPzYfFdEix_pZMH6WSWTu6lk7sMYgdQysN-aaJch9fo853_oX4Ad4B3FA |
| Cites_doi | 10.1145/1186822.1073208 10.1145/1111411.1111419 10.1016/j.gmod.2020.101059 10.1145/1198555.1198595 10.5555/3128975.3128985 10.1145/2508363.2508417 10.1145/2614106.2614108 10.1111/cgf.13926 10.1145/2024156.2024196 10.1145/2461912.2461976 10.1109/THMS.2014.2313912 10.1145/3386569.3392397 10.1007/s11590-013-0711-9 10.1111/cgf.14400 10.1007/s10994-007-5022-x 10.1145/1360612.1360690 10.1109/TVCG.2016.2628036 10.1145/2786784.2786788 10.1109/TVCG.2020.3013876 10.1080/10618600.2000.10474858 10.1002/cav.414 10.2312/egst.20141042 10.1145/2461912.2462019 10.1007/s11590-011-0430-z 10.1145/3386569.3392491 10.1145/1778765.1778769 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 |
| Copyright_xml | – notice: The Author(s) 2023 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s11590-023-02012-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1862-4480 |
| EndPage | 559 |
| ExternalDocumentID | 10_1007_s11590_023_02012_w |
| GrantInformation_xml | – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 812912 funderid: http://dx.doi.org/10.13039/100010665 – fundername: Universidade de Lisboa (UL) – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja grantid: 451-03-9/2021-14/ 200125 funderid: http://dx.doi.org/10.13039/501100004564 – fundername: DSAIPA grantid: DSAIPA/AI/0087/2018 – fundername: NOVA Laboratory for Computer Science and Informatics grantid: FCT UIDB/04516/2020 funderid: http://dx.doi.org/10.13039/501100021680 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Y Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c286t-ca96d50fcf28965179f66d262bc3d9201f9922e305bc762385c734227310359f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1862-4472 |
| IngestDate | Sat Nov 29 02:44:13 EST 2025 Fri Feb 21 02:40:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Inverse rig Quadratic blendshape model Majorization–Minimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c286t-ca96d50fcf28965179f66d262bc3d9201f9922e305bc762385c734227310359f3 |
| ORCID | 0000-0003-3071-6627 0000-0002-5656-9189 0000-0003-3497-5589 |
| OpenAccessLink | https://link.springer.com/10.1007/s11590-023-02012-w |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1007_s11590_023_02012_w springer_journals_10_1007_s11590_023_02012_w |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Optimization letters |
| PublicationTitleAbbrev | Optim Lett |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | WangMBradleyDZafeiriouSBeelerTFacial expression synthesis using a global-local multilinear frameworkComput. Graph. Forum.20203923524510.1111/cgf.13926 NeumannTVaranasiKWengerSWackerMMagnorMTheobaltCSparse localized deformation componentsACM Trans. Graph.201310.1145/2508363.2508417 HoldenDSaitoJKomuraTLearning inverse rig mappings by nonlinear regressionIEEE Trans. Vis. Comput. Graph.201610.1109/TVCG.2016.262803628113940 FengWWKimBUYuYReal-time data driven deformation using kernel canonical correlation analysisACM TOG200810.1145/1360612.1360690 Choe, B., Ko, H.S.: Analysis and synthesis of facial expressions with hand-generated muscle actuation basis. ACM SIGGRAPH 2005 Courses, (2005). https://doi.org/10.1145/1198555.1198595 Racković, S., Soares, C., Jakovetić, D., Desnica, Z: Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms. Unpublished manuscript. Retrieved from https://github.com/stevorackovic/manuscripts/blob/main/Rackovic22AcurateInterpretable.pdf TarzanaghDASaeidianZPeyghamiMRMesgaraniHA new trust region method for solving least-square transformation of system of equalities and inequalitiesOptim. Lett.2015330407010.1007/s11590-013-0711-9 ÇetinaslanCOPosition Manipulation Techniques for Facial Animation2020PortugalPorto PorcelliMOn the convergence of an inexact Gauss-Newton trust-region method for nonlinear least-squares problems with simple boundsOptim. Lett.2013302278310.1007/s11590-011-0430-z Deng, Z., Chiang, P.Y., Fox, P., Neumann, U.: Animating Blendshape faces by cross-mapping motion capture data. Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games. (2006) https://doi.org/10.1145/1111411.1111419 BouazizSWangYPaulyMOnline modeling for realtime facial animationACM TOG201310.1145/2461912.2461976 Seol, Y., Seo, J., Kim, P.H., Lewis, J.P., Noh, J.: Artist friendly facial animation retargeting. Proceedings of the 2011 SIGGRAPH Asia Conference. (2011) https://doi.org/10.1145/2024156.2024196 SongJBlancoRRChoKYouMLewisJPChoiBNohJSparse rig parameter optimization for character animationComput. Graph. Forum.201710.5555/3128975.3128985 SongSLShiWReedMAccurate face rig approximation with deep differential subspace reconstructionACM TOG202010.1145/3386569.3392491 CetinaslanOOrvalhoVSketching manipulators for localized blendshape editingGraph. Models202010.1016/j.gmod.2020.101059 LiHYuJYeYBreglerCRealtime facial animation with on-the-fly correctivesACM TOG201310.1145/2461912.2462019 Wu, C.F.J.: On the convergence properties of the EM algorithm. The Annals of statistics. 95-103 (1938) YuHLiuHRegression-based facial expression optimizationIEEE Trans. Human-Mach. Syst.201410.1109/THMS.2014.2313912 RanganathanAThe Levenberg-Marquardt algorithmTutoral LM Algorithm.2004111101110 LangeKHunterDRYangIOptimization transfer using surrogate objective functionsJ. Comput. Graph. Stat.2000181986510.1080/10618600.2000.10474858 ZhangZKwokJTYeungDYSurrogate maximization/minimization algorithms and extensionsMach. Learn.200710.1007/s10994-007-5022-x SongJChoiBSeolYNohJYCharacteristic facial retargetingACM TOG201110.1002/cav.414 Seol, Y., Lewis, J.P.: Tuning facial animation in a mocap pipeline. ACM SIGGRAPH 2014 Talks. (2014) https://doi.org/10.1145/2614106.2614108 Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM SIGGRAPH 2005 Papers. (2005) https://doi.org/10.1145/1186822.1073208 BaileySWOmensDDilorenoPO’BrienJFFast and deep facial deformationsACM TOG202010.1145/3386569.3392397 Lewis, J.P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.H., Deng, Z.: Practice and Theory of Blendshape Facial Models. Eurographics 2014–State of the Art Reports. (2014) https://doi.org/10.2312/egst.20141042 ZhangJChenKZhengJFacial expression retargeting from human to avatar made easyIEEE Trans. Visual Comput. Graph.202210.1109/TVCG.2020.3013876 LiHWeiseTPaulyMExample-based facial riggingACM TOG201010.1145/1778765.1778769 SeonghyeonKSunjinJKwanggyoonSRogerBRJunyongNDeep learning-based unsupervised human facial retargetingComput. Graph. Forum.202110.1111/cgf.14400 Holden, D., Saito, J., Komura, T.: Learning an inverse rig mapping for character animation. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2015) https://doi.org/10.1145/2786784.2786788 J Song (2012_CR21) 2017 2012_CR28 K Lange (2012_CR23) 2000 H Li (2012_CR20) 2010 2012_CR24 2012_CR26 T Neumann (2012_CR3) 2013 M Wang (2012_CR4) 2020; 39 K Seonghyeon (2012_CR10) 2021 H Li (2012_CR5) 2013 M Porcelli (2012_CR30) 2013 S Bouaziz (2012_CR17) 2013 2012_CR18 2012_CR19 2012_CR13 2012_CR14 J Song (2012_CR12) 2011 A Ranganathan (2012_CR27) 2004; 11 O Cetinaslan (2012_CR25) 2020 SW Bailey (2012_CR8) 2020 2012_CR1 J Zhang (2012_CR6) 2022 WW Feng (2012_CR15) 2008 H Yu (2012_CR16) 2014 SL Song (2012_CR9) 2020 Z Zhang (2012_CR22) 2007 2012_CR11 DA Tarzanagh (2012_CR29) 2015 CO Çetinaslan (2012_CR2) 2020 D Holden (2012_CR7) 2016 |
| References_xml | – reference: PorcelliMOn the convergence of an inexact Gauss-Newton trust-region method for nonlinear least-squares problems with simple boundsOptim. Lett.2013302278310.1007/s11590-011-0430-z – reference: SongSLShiWReedMAccurate face rig approximation with deep differential subspace reconstructionACM TOG202010.1145/3386569.3392491 – reference: ZhangJChenKZhengJFacial expression retargeting from human to avatar made easyIEEE Trans. Visual Comput. Graph.202210.1109/TVCG.2020.3013876 – reference: Seol, Y., Seo, J., Kim, P.H., Lewis, J.P., Noh, J.: Artist friendly facial animation retargeting. Proceedings of the 2011 SIGGRAPH Asia Conference. (2011) https://doi.org/10.1145/2024156.2024196 – reference: CetinaslanOOrvalhoVSketching manipulators for localized blendshape editingGraph. Models202010.1016/j.gmod.2020.101059 – reference: SongJChoiBSeolYNohJYCharacteristic facial retargetingACM TOG201110.1002/cav.414 – reference: HoldenDSaitoJKomuraTLearning inverse rig mappings by nonlinear regressionIEEE Trans. Vis. Comput. Graph.201610.1109/TVCG.2016.262803628113940 – reference: YuHLiuHRegression-based facial expression optimizationIEEE Trans. Human-Mach. Syst.201410.1109/THMS.2014.2313912 – reference: Wu, C.F.J.: On the convergence properties of the EM algorithm. The Annals of statistics. 95-103 (1938) – reference: Racković, S., Soares, C., Jakovetić, D., Desnica, Z: Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms. Unpublished manuscript. Retrieved from https://github.com/stevorackovic/manuscripts/blob/main/Rackovic22AcurateInterpretable.pdf – reference: WangMBradleyDZafeiriouSBeelerTFacial expression synthesis using a global-local multilinear frameworkComput. Graph. Forum.20203923524510.1111/cgf.13926 – reference: BaileySWOmensDDilorenoPO’BrienJFFast and deep facial deformationsACM TOG202010.1145/3386569.3392397 – reference: ÇetinaslanCOPosition Manipulation Techniques for Facial Animation2020PortugalPorto – reference: SongJBlancoRRChoKYouMLewisJPChoiBNohJSparse rig parameter optimization for character animationComput. Graph. Forum.201710.5555/3128975.3128985 – reference: Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM SIGGRAPH 2005 Papers. (2005) https://doi.org/10.1145/1186822.1073208 – reference: LiHYuJYeYBreglerCRealtime facial animation with on-the-fly correctivesACM TOG201310.1145/2461912.2462019 – reference: Seol, Y., Lewis, J.P.: Tuning facial animation in a mocap pipeline. ACM SIGGRAPH 2014 Talks. (2014) https://doi.org/10.1145/2614106.2614108 – reference: LiHWeiseTPaulyMExample-based facial riggingACM TOG201010.1145/1778765.1778769 – reference: BouazizSWangYPaulyMOnline modeling for realtime facial animationACM TOG201310.1145/2461912.2461976 – reference: Holden, D., Saito, J., Komura, T.: Learning an inverse rig mapping for character animation. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2015) https://doi.org/10.1145/2786784.2786788 – reference: TarzanaghDASaeidianZPeyghamiMRMesgaraniHA new trust region method for solving least-square transformation of system of equalities and inequalitiesOptim. Lett.2015330407010.1007/s11590-013-0711-9 – reference: Choe, B., Ko, H.S.: Analysis and synthesis of facial expressions with hand-generated muscle actuation basis. ACM SIGGRAPH 2005 Courses, (2005). https://doi.org/10.1145/1198555.1198595 – reference: LangeKHunterDRYangIOptimization transfer using surrogate objective functionsJ. Comput. Graph. Stat.2000181986510.1080/10618600.2000.10474858 – reference: NeumannTVaranasiKWengerSWackerMMagnorMTheobaltCSparse localized deformation componentsACM Trans. Graph.201310.1145/2508363.2508417 – reference: FengWWKimBUYuYReal-time data driven deformation using kernel canonical correlation analysisACM TOG200810.1145/1360612.1360690 – reference: RanganathanAThe Levenberg-Marquardt algorithmTutoral LM Algorithm.2004111101110 – reference: SeonghyeonKSunjinJKwanggyoonSRogerBRJunyongNDeep learning-based unsupervised human facial retargetingComput. Graph. Forum.202110.1111/cgf.14400 – reference: Lewis, J.P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.H., Deng, Z.: Practice and Theory of Blendshape Facial Models. Eurographics 2014–State of the Art Reports. (2014) https://doi.org/10.2312/egst.20141042 – reference: Deng, Z., Chiang, P.Y., Fox, P., Neumann, U.: Animating Blendshape faces by cross-mapping motion capture data. Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games. (2006) https://doi.org/10.1145/1111411.1111419 – reference: ZhangZKwokJTYeungDYSurrogate maximization/minimization algorithms and extensionsMach. Learn.200710.1007/s10994-007-5022-x – ident: 2012_CR19 doi: 10.1145/1186822.1073208 – ident: 2012_CR11 doi: 10.1145/1111411.1111419 – year: 2020 ident: 2012_CR25 publication-title: Graph. Models doi: 10.1016/j.gmod.2020.101059 – ident: 2012_CR18 doi: 10.1145/1198555.1198595 – year: 2017 ident: 2012_CR21 publication-title: Comput. Graph. Forum. doi: 10.5555/3128975.3128985 – year: 2013 ident: 2012_CR3 publication-title: ACM Trans. Graph. doi: 10.1145/2508363.2508417 – ident: 2012_CR13 doi: 10.1145/2614106.2614108 – volume: 39 start-page: 235 year: 2020 ident: 2012_CR4 publication-title: Comput. Graph. Forum. doi: 10.1111/cgf.13926 – ident: 2012_CR26 doi: 10.1145/2024156.2024196 – year: 2013 ident: 2012_CR17 publication-title: ACM TOG doi: 10.1145/2461912.2461976 – volume: 11 start-page: 101 issue: 1 year: 2004 ident: 2012_CR27 publication-title: Tutoral LM Algorithm. – year: 2014 ident: 2012_CR16 publication-title: IEEE Trans. Human-Mach. Syst. doi: 10.1109/THMS.2014.2313912 – ident: 2012_CR24 – year: 2020 ident: 2012_CR8 publication-title: ACM TOG doi: 10.1145/3386569.3392397 – year: 2015 ident: 2012_CR29 publication-title: Optim. Lett. doi: 10.1007/s11590-013-0711-9 – year: 2021 ident: 2012_CR10 publication-title: Comput. Graph. Forum. doi: 10.1111/cgf.14400 – year: 2007 ident: 2012_CR22 publication-title: Mach. Learn. doi: 10.1007/s10994-007-5022-x – year: 2008 ident: 2012_CR15 publication-title: ACM TOG doi: 10.1145/1360612.1360690 – ident: 2012_CR28 – year: 2016 ident: 2012_CR7 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2016.2628036 – ident: 2012_CR14 doi: 10.1145/2786784.2786788 – year: 2022 ident: 2012_CR6 publication-title: IEEE Trans. Visual Comput. Graph. doi: 10.1109/TVCG.2020.3013876 – year: 2000 ident: 2012_CR23 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2000.10474858 – year: 2011 ident: 2012_CR12 publication-title: ACM TOG doi: 10.1002/cav.414 – ident: 2012_CR1 doi: 10.2312/egst.20141042 – volume-title: Position Manipulation Techniques for Facial Animation year: 2020 ident: 2012_CR2 – year: 2013 ident: 2012_CR5 publication-title: ACM TOG doi: 10.1145/2461912.2462019 – year: 2013 ident: 2012_CR30 publication-title: Optim. Lett. doi: 10.1007/s11590-011-0430-z – year: 2020 ident: 2012_CR9 publication-title: ACM TOG doi: 10.1145/3386569.3392491 – year: 2010 ident: 2012_CR20 publication-title: ACM TOG doi: 10.1145/1778765.1778769 |
| SSID | ssj0061199 |
| Score | 2.3231862 |
| Snippet | Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 545 |
| SubjectTerms | Computational Intelligence Mathematics Mathematics and Statistics Numerical and Computational Physics Operations Research/Decision Theory Optimization Original Paper Simulation |
| Title | A majorization–minimization-based method for nonconvex inverse rig problems in facial animation: algorithm derivation |
| URI | https://link.springer.com/article/10.1007/s11590-023-02012-w |
| Volume | 18 |
| WOSCitedRecordID | wos000993004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1862-4480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061199 issn: 1862-4472 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K85IENLCVO4jhsFaJigArxqLpFiRNDEU1REygj_4F_yC_hnDiUSggJhgyOLMc523ef7bvvAA4UYtaIWYLGjuTUjQNORSAllSqyWIo2kZW5Abvnfqcjer3g0gSF5bW3e30lWWrqSbAbWl6Loo3Bx9L5OGZhDs2d0Mvx6rpb619uV1kjbaHjgVyfmVCZn9uYNkfTd6GliWkv_69zK7BkICVpVXNgFWbSbA0WvxENYunii501X4dxiwyih-HIhGB-vL1rgpGBKVJt2BJSpZYmiGlJNsxK5_RX0s-0F0dKcEtPTCqaHF8SFemTdxJhK2UbxyR6vMMPFPcDkmAfqnPfDbhtn96cnFGTgIFKJnhBZRTwxLOUVLgt45rMS3GeMM5i6SQB_qfSrLYpqoxYolJ1hCd9x2WIiGzNDKicTWhgF9MtIMxCPYrQkCvluF7ixg5CjcTjPreVnQq_CYf1OIRPFc9GOGFU1sINUbhhKdxw3ISjehhCs-byX6pv_636DiwwhC6Vp9kuNIrRc7oH8_Kl6Oej_XKyfQJTgtE8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7Iiy-sANLCVO4iTcKkRVRFshKFVvUeLEUERT1ATKkX_gD_kSxlkolRASHHJwZDmOncx7tmfeABxJ5Kw-0xwaGIJTM3A5dVwhqJC-xiLERJblBuw27Xbb6fXcqyIoLCm93csjycxST4LdEHk1ihiDl6bycczCnImIpRz5rm-6pf3lep41UndUPJBpsyJU5uc2puFo-iw0g5j6yv86twrLBaUktfwbWIOZKF6HpW9Cg1hqfamzJhswrpGB_zAcFSGYH2_vSmBkUBSpAraQ5KmlCXJaEg_jzDn9lfRj5cUREVzSkyIVTYI3ifTVzjvxsZWsjVPiP97hA9L7AQmxD_m-7ybc1s87Zw1aJGCggjk8pcJ3eWhpUkhclnEl5iU5DxlngTBCF99TKlXbCE1GINCoGo4lbMNkyIh0pQwojS2oYBejbSBMQzuK1JBLaZhWaAYGUo3Q4jbXpR45dhWOy3nwnnKdDW-iqKwG18PB9bLB9cZVOCmnwSv-ueSX6jt_q34IC41Oq-k1L9qXu7DIkMbkXmd7UElHz9E-zIuXtJ-MDrIP7xMsP9Qg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT4MwFL3RaYw--G2cn33wTZtBgQK-LeqicS5L1GVvBArVGceWgc5H_4P_0F_iLTC3JcbE-MBDSVNKC_eetveeA3AkEbP6THNoYAhOzcDl1HGFoEL6GovQJ7JMG7BVtxsNp912mxNZ_Fm0--hIMs9pUCxNcVrph7IyTnxDL6xR9Dd4aUqbYxbmTCUapNbrt62RLeZ6riCpOyo3yLRZkTbzcxvTrmn6XDRzN7WV_3d0FZYLqEmq-bexBjNRvA5LEwSEWLr5Zm1NNmBYJV3_qTcoUjM_3z8U8Ui3KFLl8EKSS04TxLok7sVZ0Pob6cQquiMiuNQnhURNgjeJ9NWOPPGxlayNU-I_P-AD0scuCbEP-X7wJtzXLu7OLmkhzEAFc3hKhe_y0NKkkLhc44rkS3IeMs4CYYQuvqdUbLcRmpJAoLE1HEvYhskQKemKMVAaW1DCLkbbQJiG9hUhI5fSMK3QDAyEIKHFba5LPXLsMhyP5sTr5_wb3phpWQ2uh4PrZYPrDctwMpoSr_gXk1-q7_yt-iEsNM9rXv2qcb0LiwzRTR6MtgeldPAS7cO8eE07yeAg-wa_AABw3QQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+majorization%E2%80%93minimization-based+method+for+nonconvex+inverse+rig+problems+in+facial+animation%3A+algorithm+derivation&rft.jtitle=Optimization+letters&rft.au=Rackovi%C4%87%2C+Stevo&rft.au=Soares%2C+Cl%C3%A1udia&rft.au=Jakoveti%C4%87%2C+Du%C5%A1an&rft.au=Desnica%2C+Zoranka&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=18&rft.issue=2&rft.spage=545&rft.epage=559&rft_id=info:doi/10.1007%2Fs11590-023-02012-w&rft.externalDocID=10_1007_s11590_023_02012_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon |