A majorization–minimization-based method for nonconvex inverse rig problems in facial animation: algorithm derivation

Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of controllers, and a manual approach is painfully slow. Different solutions have been proposed that produce output in real-time or generalize well for dif...

Full description

Saved in:
Bibliographic Details
Published in:Optimization letters Vol. 18; no. 2; pp. 545 - 559
Main Authors: Racković, Stevo, Soares, Cláudia, Jakovetić, Dušan, Desnica, Zoranka
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Subjects:
ISSN:1862-4472, 1862-4480
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of controllers, and a manual approach is painfully slow. Different solutions have been proposed that produce output in real-time or generalize well for different face topologies. However, all these prior works consider a linear approximation of the blendshape function and hence do not provide a high-enough level of detail for modern realistic human face reconstruction. A second-order blendshape approximation leads to higher fidelity facial animation but generates a non-linear least squares optimization problem with high dimensionality. We derive a method for solving the inverse rig in blendshape animation using quadratic corrective terms, which increases accuracy. At the same time, due to the proposed construction of the objective function, it yields a sparser estimated weight vector compared to the state-of-the-art methods. The former feature means lower demand for subsequent manual corrections of the solution, while the latter indicates that the manual modifications are also easier to include. Our algorithm is iterative and employs a Majorization–Minimization paradigm to cope with the increased complexity produced by adding corrective terms. The surrogate function is easy to solve and allows for further parallelization on the component level within each iteration. This paper is complementary to an accompanying paper (Racković et al. arxiv preprint. https://arxiv.org/abs/2302.04843 , 2023) where we provide detailed experimental results and discussion, including highly-realistic animation data, and show a clear superiority of the results compared to the state-of-the-art methods.
AbstractList Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of controllers, and a manual approach is painfully slow. Different solutions have been proposed that produce output in real-time or generalize well for different face topologies. However, all these prior works consider a linear approximation of the blendshape function and hence do not provide a high-enough level of detail for modern realistic human face reconstruction. A second-order blendshape approximation leads to higher fidelity facial animation but generates a non-linear least squares optimization problem with high dimensionality. We derive a method for solving the inverse rig in blendshape animation using quadratic corrective terms, which increases accuracy. At the same time, due to the proposed construction of the objective function, it yields a sparser estimated weight vector compared to the state-of-the-art methods. The former feature means lower demand for subsequent manual corrections of the solution, while the latter indicates that the manual modifications are also easier to include. Our algorithm is iterative and employs a Majorization–Minimization paradigm to cope with the increased complexity produced by adding corrective terms. The surrogate function is easy to solve and allows for further parallelization on the component level within each iteration. This paper is complementary to an accompanying paper (Racković et al. arxiv preprint. https://arxiv.org/abs/2302.04843 , 2023) where we provide detailed experimental results and discussion, including highly-realistic animation data, and show a clear superiority of the results compared to the state-of-the-art methods.
Author Jakovetić, Dušan
Racković, Stevo
Soares, Cláudia
Desnica, Zoranka
Author_xml – sequence: 1
  givenname: Stevo
  orcidid: 0000-0002-5656-9189
  surname: Racković
  fullname: Racković, Stevo
  email: stevo.rackovic@tecnico.ulisboa.pt
  organization: Institute for Systems and Robotics, Instituto Superior Técnico
– sequence: 2
  givenname: Cláudia
  orcidid: 0000-0003-3071-6627
  surname: Soares
  fullname: Soares, Cláudia
  organization: Computer Science Department, NOVA School of Science and Technology
– sequence: 3
  givenname: Dušan
  orcidid: 0000-0003-3497-5589
  surname: Jakovetić
  fullname: Jakovetić, Dušan
  organization: Department of Mathematics, Faculty of Sciences, University of Novi Sad
– sequence: 4
  givenname: Zoranka
  surname: Desnica
  fullname: Desnica, Zoranka
  organization: 3Lateral Animation Studio, Epic Games Company
BookMark eNp9UEtOwzAQtVCRaAsXYOULGPxJnJhdVfGTKrGBteU4dusqsSs7tMCKO3BDToJpK5Ys5qt5b2beBIx88AaAS4KvCMbVdSKkFBhhyrJhQtHuBIxJzSkqihqP_vKKnoFJSmuMOSFCjMFuBnu1DtF9qMEF__351Tvv-mOJGpVMC3szrEILbYgw79XBb80bdNnHZGB0S7iJoelMn3ITWqWd6qDKLHuOG6i6ZV4wrHrYmui2--45OLWqS-biGKfg5e72ef6AFk_3j_PZAmla8wFpJXhbYqstrQUvSSUs5y3ltNGsFflTKwSlhuGy0RWnrC51xQpKK0YwK4VlU0APvDqGlKKxchPzYfFdEix_pZMH6WSWTu6lk7sMYgdQysN-aaJch9fo853_oX4Ad4B3FA
Cites_doi 10.1145/1186822.1073208
10.1145/1111411.1111419
10.1016/j.gmod.2020.101059
10.1145/1198555.1198595
10.5555/3128975.3128985
10.1145/2508363.2508417
10.1145/2614106.2614108
10.1111/cgf.13926
10.1145/2024156.2024196
10.1145/2461912.2461976
10.1109/THMS.2014.2313912
10.1145/3386569.3392397
10.1007/s11590-013-0711-9
10.1111/cgf.14400
10.1007/s10994-007-5022-x
10.1145/1360612.1360690
10.1109/TVCG.2016.2628036
10.1145/2786784.2786788
10.1109/TVCG.2020.3013876
10.1080/10618600.2000.10474858
10.1002/cav.414
10.2312/egst.20141042
10.1145/2461912.2462019
10.1007/s11590-011-0430-z
10.1145/3386569.3392491
10.1145/1778765.1778769
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11590-023-02012-w
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 559
ExternalDocumentID 10_1007_s11590_023_02012_w
GrantInformation_xml – fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 812912
  funderid: http://dx.doi.org/10.13039/100010665
– fundername: Universidade de Lisboa (UL)
– fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
  grantid: 451-03-9/2021-14/ 200125
  funderid: http://dx.doi.org/10.13039/501100004564
– fundername: DSAIPA
  grantid: DSAIPA/AI/0087/2018
– fundername: NOVA Laboratory for Computer Science and Informatics
  grantid: FCT UIDB/04516/2020
  funderid: http://dx.doi.org/10.13039/501100021680
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c286t-ca96d50fcf28965179f66d262bc3d9201f9922e305bc762385c734227310359f3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4472
IngestDate Sat Nov 29 02:44:13 EST 2025
Fri Feb 21 02:40:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Inverse rig
Quadratic blendshape model
Majorization–Minimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-ca96d50fcf28965179f66d262bc3d9201f9922e305bc762385c734227310359f3
ORCID 0000-0003-3071-6627
0000-0002-5656-9189
0000-0003-3497-5589
OpenAccessLink https://link.springer.com/10.1007/s11590-023-02012-w
PageCount 15
ParticipantIDs crossref_primary_10_1007_s11590_023_02012_w
springer_journals_10_1007_s11590_023_02012_w
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References WangMBradleyDZafeiriouSBeelerTFacial expression synthesis using a global-local multilinear frameworkComput. Graph. Forum.20203923524510.1111/cgf.13926
NeumannTVaranasiKWengerSWackerMMagnorMTheobaltCSparse localized deformation componentsACM Trans. Graph.201310.1145/2508363.2508417
HoldenDSaitoJKomuraTLearning inverse rig mappings by nonlinear regressionIEEE Trans. Vis. Comput. Graph.201610.1109/TVCG.2016.262803628113940
FengWWKimBUYuYReal-time data driven deformation using kernel canonical correlation analysisACM TOG200810.1145/1360612.1360690
Choe, B., Ko, H.S.: Analysis and synthesis of facial expressions with hand-generated muscle actuation basis. ACM SIGGRAPH 2005 Courses, (2005). https://doi.org/10.1145/1198555.1198595
Racković, S., Soares, C., Jakovetić, D., Desnica, Z: Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms. Unpublished manuscript. Retrieved from https://github.com/stevorackovic/manuscripts/blob/main/Rackovic22AcurateInterpretable.pdf
TarzanaghDASaeidianZPeyghamiMRMesgaraniHA new trust region method for solving least-square transformation of system of equalities and inequalitiesOptim. Lett.2015330407010.1007/s11590-013-0711-9
ÇetinaslanCOPosition Manipulation Techniques for Facial Animation2020PortugalPorto
PorcelliMOn the convergence of an inexact Gauss-Newton trust-region method for nonlinear least-squares problems with simple boundsOptim. Lett.2013302278310.1007/s11590-011-0430-z
Deng, Z., Chiang, P.Y., Fox, P., Neumann, U.: Animating Blendshape faces by cross-mapping motion capture data. Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games. (2006) https://doi.org/10.1145/1111411.1111419
BouazizSWangYPaulyMOnline modeling for realtime facial animationACM TOG201310.1145/2461912.2461976
Seol, Y., Seo, J., Kim, P.H., Lewis, J.P., Noh, J.: Artist friendly facial animation retargeting. Proceedings of the 2011 SIGGRAPH Asia Conference. (2011) https://doi.org/10.1145/2024156.2024196
SongJBlancoRRChoKYouMLewisJPChoiBNohJSparse rig parameter optimization for character animationComput. Graph. Forum.201710.5555/3128975.3128985
SongSLShiWReedMAccurate face rig approximation with deep differential subspace reconstructionACM TOG202010.1145/3386569.3392491
CetinaslanOOrvalhoVSketching manipulators for localized blendshape editingGraph. Models202010.1016/j.gmod.2020.101059
LiHYuJYeYBreglerCRealtime facial animation with on-the-fly correctivesACM TOG201310.1145/2461912.2462019
Wu, C.F.J.: On the convergence properties of the EM algorithm. The Annals of statistics. 95-103 (1938)
YuHLiuHRegression-based facial expression optimizationIEEE Trans. Human-Mach. Syst.201410.1109/THMS.2014.2313912
RanganathanAThe Levenberg-Marquardt algorithmTutoral LM Algorithm.2004111101110
LangeKHunterDRYangIOptimization transfer using surrogate objective functionsJ. Comput. Graph. Stat.2000181986510.1080/10618600.2000.10474858
ZhangZKwokJTYeungDYSurrogate maximization/minimization algorithms and extensionsMach. Learn.200710.1007/s10994-007-5022-x
SongJChoiBSeolYNohJYCharacteristic facial retargetingACM TOG201110.1002/cav.414
Seol, Y., Lewis, J.P.: Tuning facial animation in a mocap pipeline. ACM SIGGRAPH 2014 Talks. (2014) https://doi.org/10.1145/2614106.2614108
Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM SIGGRAPH 2005 Papers. (2005) https://doi.org/10.1145/1186822.1073208
BaileySWOmensDDilorenoPO’BrienJFFast and deep facial deformationsACM TOG202010.1145/3386569.3392397
Lewis, J.P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.H., Deng, Z.: Practice and Theory of Blendshape Facial Models. Eurographics 2014–State of the Art Reports. (2014) https://doi.org/10.2312/egst.20141042
ZhangJChenKZhengJFacial expression retargeting from human to avatar made easyIEEE Trans. Visual Comput. Graph.202210.1109/TVCG.2020.3013876
LiHWeiseTPaulyMExample-based facial riggingACM TOG201010.1145/1778765.1778769
SeonghyeonKSunjinJKwanggyoonSRogerBRJunyongNDeep learning-based unsupervised human facial retargetingComput. Graph. Forum.202110.1111/cgf.14400
Holden, D., Saito, J., Komura, T.: Learning an inverse rig mapping for character animation. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2015) https://doi.org/10.1145/2786784.2786788
J Song (2012_CR21) 2017
2012_CR28
K Lange (2012_CR23) 2000
H Li (2012_CR20) 2010
2012_CR24
2012_CR26
T Neumann (2012_CR3) 2013
M Wang (2012_CR4) 2020; 39
K Seonghyeon (2012_CR10) 2021
H Li (2012_CR5) 2013
M Porcelli (2012_CR30) 2013
S Bouaziz (2012_CR17) 2013
2012_CR18
2012_CR19
2012_CR13
2012_CR14
J Song (2012_CR12) 2011
A Ranganathan (2012_CR27) 2004; 11
O Cetinaslan (2012_CR25) 2020
SW Bailey (2012_CR8) 2020
2012_CR1
J Zhang (2012_CR6) 2022
WW Feng (2012_CR15) 2008
H Yu (2012_CR16) 2014
SL Song (2012_CR9) 2020
Z Zhang (2012_CR22) 2007
2012_CR11
DA Tarzanagh (2012_CR29) 2015
CO Çetinaslan (2012_CR2) 2020
D Holden (2012_CR7) 2016
References_xml – reference: PorcelliMOn the convergence of an inexact Gauss-Newton trust-region method for nonlinear least-squares problems with simple boundsOptim. Lett.2013302278310.1007/s11590-011-0430-z
– reference: SongSLShiWReedMAccurate face rig approximation with deep differential subspace reconstructionACM TOG202010.1145/3386569.3392491
– reference: ZhangJChenKZhengJFacial expression retargeting from human to avatar made easyIEEE Trans. Visual Comput. Graph.202210.1109/TVCG.2020.3013876
– reference: Seol, Y., Seo, J., Kim, P.H., Lewis, J.P., Noh, J.: Artist friendly facial animation retargeting. Proceedings of the 2011 SIGGRAPH Asia Conference. (2011) https://doi.org/10.1145/2024156.2024196
– reference: CetinaslanOOrvalhoVSketching manipulators for localized blendshape editingGraph. Models202010.1016/j.gmod.2020.101059
– reference: SongJChoiBSeolYNohJYCharacteristic facial retargetingACM TOG201110.1002/cav.414
– reference: HoldenDSaitoJKomuraTLearning inverse rig mappings by nonlinear regressionIEEE Trans. Vis. Comput. Graph.201610.1109/TVCG.2016.262803628113940
– reference: YuHLiuHRegression-based facial expression optimizationIEEE Trans. Human-Mach. Syst.201410.1109/THMS.2014.2313912
– reference: Wu, C.F.J.: On the convergence properties of the EM algorithm. The Annals of statistics. 95-103 (1938)
– reference: Racković, S., Soares, C., Jakovetić, D., Desnica, Z: Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms. Unpublished manuscript. Retrieved from https://github.com/stevorackovic/manuscripts/blob/main/Rackovic22AcurateInterpretable.pdf
– reference: WangMBradleyDZafeiriouSBeelerTFacial expression synthesis using a global-local multilinear frameworkComput. Graph. Forum.20203923524510.1111/cgf.13926
– reference: BaileySWOmensDDilorenoPO’BrienJFFast and deep facial deformationsACM TOG202010.1145/3386569.3392397
– reference: ÇetinaslanCOPosition Manipulation Techniques for Facial Animation2020PortugalPorto
– reference: SongJBlancoRRChoKYouMLewisJPChoiBNohJSparse rig parameter optimization for character animationComput. Graph. Forum.201710.5555/3128975.3128985
– reference: Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM SIGGRAPH 2005 Papers. (2005) https://doi.org/10.1145/1186822.1073208
– reference: LiHYuJYeYBreglerCRealtime facial animation with on-the-fly correctivesACM TOG201310.1145/2461912.2462019
– reference: Seol, Y., Lewis, J.P.: Tuning facial animation in a mocap pipeline. ACM SIGGRAPH 2014 Talks. (2014) https://doi.org/10.1145/2614106.2614108
– reference: LiHWeiseTPaulyMExample-based facial riggingACM TOG201010.1145/1778765.1778769
– reference: BouazizSWangYPaulyMOnline modeling for realtime facial animationACM TOG201310.1145/2461912.2461976
– reference: Holden, D., Saito, J., Komura, T.: Learning an inverse rig mapping for character animation. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2015) https://doi.org/10.1145/2786784.2786788
– reference: TarzanaghDASaeidianZPeyghamiMRMesgaraniHA new trust region method for solving least-square transformation of system of equalities and inequalitiesOptim. Lett.2015330407010.1007/s11590-013-0711-9
– reference: Choe, B., Ko, H.S.: Analysis and synthesis of facial expressions with hand-generated muscle actuation basis. ACM SIGGRAPH 2005 Courses, (2005). https://doi.org/10.1145/1198555.1198595
– reference: LangeKHunterDRYangIOptimization transfer using surrogate objective functionsJ. Comput. Graph. Stat.2000181986510.1080/10618600.2000.10474858
– reference: NeumannTVaranasiKWengerSWackerMMagnorMTheobaltCSparse localized deformation componentsACM Trans. Graph.201310.1145/2508363.2508417
– reference: FengWWKimBUYuYReal-time data driven deformation using kernel canonical correlation analysisACM TOG200810.1145/1360612.1360690
– reference: RanganathanAThe Levenberg-Marquardt algorithmTutoral LM Algorithm.2004111101110
– reference: SeonghyeonKSunjinJKwanggyoonSRogerBRJunyongNDeep learning-based unsupervised human facial retargetingComput. Graph. Forum.202110.1111/cgf.14400
– reference: Lewis, J.P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.H., Deng, Z.: Practice and Theory of Blendshape Facial Models. Eurographics 2014–State of the Art Reports. (2014) https://doi.org/10.2312/egst.20141042
– reference: Deng, Z., Chiang, P.Y., Fox, P., Neumann, U.: Animating Blendshape faces by cross-mapping motion capture data. Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games. (2006) https://doi.org/10.1145/1111411.1111419
– reference: ZhangZKwokJTYeungDYSurrogate maximization/minimization algorithms and extensionsMach. Learn.200710.1007/s10994-007-5022-x
– ident: 2012_CR19
  doi: 10.1145/1186822.1073208
– ident: 2012_CR11
  doi: 10.1145/1111411.1111419
– year: 2020
  ident: 2012_CR25
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2020.101059
– ident: 2012_CR18
  doi: 10.1145/1198555.1198595
– year: 2017
  ident: 2012_CR21
  publication-title: Comput. Graph. Forum.
  doi: 10.5555/3128975.3128985
– year: 2013
  ident: 2012_CR3
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2508363.2508417
– ident: 2012_CR13
  doi: 10.1145/2614106.2614108
– volume: 39
  start-page: 235
  year: 2020
  ident: 2012_CR4
  publication-title: Comput. Graph. Forum.
  doi: 10.1111/cgf.13926
– ident: 2012_CR26
  doi: 10.1145/2024156.2024196
– year: 2013
  ident: 2012_CR17
  publication-title: ACM TOG
  doi: 10.1145/2461912.2461976
– volume: 11
  start-page: 101
  issue: 1
  year: 2004
  ident: 2012_CR27
  publication-title: Tutoral LM Algorithm.
– year: 2014
  ident: 2012_CR16
  publication-title: IEEE Trans. Human-Mach. Syst.
  doi: 10.1109/THMS.2014.2313912
– ident: 2012_CR24
– year: 2020
  ident: 2012_CR8
  publication-title: ACM TOG
  doi: 10.1145/3386569.3392397
– year: 2015
  ident: 2012_CR29
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-013-0711-9
– year: 2021
  ident: 2012_CR10
  publication-title: Comput. Graph. Forum.
  doi: 10.1111/cgf.14400
– year: 2007
  ident: 2012_CR22
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5022-x
– year: 2008
  ident: 2012_CR15
  publication-title: ACM TOG
  doi: 10.1145/1360612.1360690
– ident: 2012_CR28
– year: 2016
  ident: 2012_CR7
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2016.2628036
– ident: 2012_CR14
  doi: 10.1145/2786784.2786788
– year: 2022
  ident: 2012_CR6
  publication-title: IEEE Trans. Visual Comput. Graph.
  doi: 10.1109/TVCG.2020.3013876
– year: 2000
  ident: 2012_CR23
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2000.10474858
– year: 2011
  ident: 2012_CR12
  publication-title: ACM TOG
  doi: 10.1002/cav.414
– ident: 2012_CR1
  doi: 10.2312/egst.20141042
– volume-title: Position Manipulation Techniques for Facial Animation
  year: 2020
  ident: 2012_CR2
– year: 2013
  ident: 2012_CR5
  publication-title: ACM TOG
  doi: 10.1145/2461912.2462019
– year: 2013
  ident: 2012_CR30
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-011-0430-z
– year: 2020
  ident: 2012_CR9
  publication-title: ACM TOG
  doi: 10.1145/3386569.3392491
– year: 2010
  ident: 2012_CR20
  publication-title: ACM TOG
  doi: 10.1145/1778765.1778769
SSID ssj0061199
Score 2.3231862
Snippet Automated methods for facial animation are a necessary tool in the modern industry since the standard blendshape head models consist of hundreds of...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 545
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title A majorization–minimization-based method for nonconvex inverse rig problems in facial animation: algorithm derivation
URI https://link.springer.com/article/10.1007/s11590-023-02012-w
Volume 18
WOSCitedRecordID wos000993004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K85IENLCVO4jhsFaJigArxqLpFiRNDEU1REygj_4F_yC_hnDiUSggJhgyOLMc523ef7bvvAA4UYtaIWYLGjuTUjQNORSAllSqyWIo2kZW5Abvnfqcjer3g0gSF5bW3e30lWWrqSbAbWl6Loo3Bx9L5OGZhDs2d0Mvx6rpb619uV1kjbaHjgVyfmVCZn9uYNkfTd6GliWkv_69zK7BkICVpVXNgFWbSbA0WvxENYunii501X4dxiwyih-HIhGB-vL1rgpGBKVJt2BJSpZYmiGlJNsxK5_RX0s-0F0dKcEtPTCqaHF8SFemTdxJhK2UbxyR6vMMPFPcDkmAfqnPfDbhtn96cnFGTgIFKJnhBZRTwxLOUVLgt45rMS3GeMM5i6SQB_qfSrLYpqoxYolJ1hCd9x2WIiGzNDKicTWhgF9MtIMxCPYrQkCvluF7ixg5CjcTjPreVnQq_CYf1OIRPFc9GOGFU1sINUbhhKdxw3ISjehhCs-byX6pv_636DiwwhC6Vp9kuNIrRc7oH8_Kl6Oej_XKyfQJTgtE8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7Iiy-sANLCVO4iTcKkRVRFshKFVvUeLEUERT1ATKkX_gD_kSxlkolRASHHJwZDmOncx7tmfeABxJ5Kw-0xwaGIJTM3A5dVwhqJC-xiLERJblBuw27Xbb6fXcqyIoLCm93csjycxST4LdEHk1ihiDl6bycczCnImIpRz5rm-6pf3lep41UndUPJBpsyJU5uc2puFo-iw0g5j6yv86twrLBaUktfwbWIOZKF6HpW9Cg1hqfamzJhswrpGB_zAcFSGYH2_vSmBkUBSpAraQ5KmlCXJaEg_jzDn9lfRj5cUREVzSkyIVTYI3ifTVzjvxsZWsjVPiP97hA9L7AQmxD_m-7ybc1s87Zw1aJGCggjk8pcJ3eWhpUkhclnEl5iU5DxlngTBCF99TKlXbCE1GINCoGo4lbMNkyIh0pQwojS2oYBejbSBMQzuK1JBLaZhWaAYGUo3Q4jbXpR45dhWOy3nwnnKdDW-iqKwG18PB9bLB9cZVOCmnwSv-ueSX6jt_q34IC41Oq-k1L9qXu7DIkMbkXmd7UElHz9E-zIuXtJ-MDrIP7xMsP9Qg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT4MwFL3RaYw--G2cn33wTZtBgQK-LeqicS5L1GVvBArVGceWgc5H_4P_0F_iLTC3JcbE-MBDSVNKC_eetveeA3AkEbP6THNoYAhOzcDl1HGFoEL6GovQJ7JMG7BVtxsNp912mxNZ_Fm0--hIMs9pUCxNcVrph7IyTnxDL6xR9Dd4aUqbYxbmTCUapNbrt62RLeZ6riCpOyo3yLRZkTbzcxvTrmn6XDRzN7WV_3d0FZYLqEmq-bexBjNRvA5LEwSEWLr5Zm1NNmBYJV3_qTcoUjM_3z8U8Ui3KFLl8EKSS04TxLok7sVZ0Pob6cQquiMiuNQnhURNgjeJ9NWOPPGxlayNU-I_P-AD0scuCbEP-X7wJtzXLu7OLmkhzEAFc3hKhe_y0NKkkLhc44rkS3IeMs4CYYQuvqdUbLcRmpJAoLE1HEvYhskQKemKMVAaW1DCLkbbQJiG9hUhI5fSMK3QDAyEIKHFba5LPXLsMhyP5sTr5_wb3phpWQ2uh4PrZYPrDctwMpoSr_gXk1-q7_yt-iEsNM9rXv2qcb0LiwzRTR6MtgeldPAS7cO8eE07yeAg-wa_AABw3QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+majorization%E2%80%93minimization-based+method+for+nonconvex+inverse+rig+problems+in+facial+animation%3A+algorithm+derivation&rft.jtitle=Optimization+letters&rft.au=Rackovi%C4%87%2C+Stevo&rft.au=Soares%2C+Cl%C3%A1udia&rft.au=Jakoveti%C4%87%2C+Du%C5%A1an&rft.au=Desnica%2C+Zoranka&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=18&rft.issue=2&rft.spage=545&rft.epage=559&rft_id=info:doi/10.1007%2Fs11590-023-02012-w&rft.externalDocID=10_1007_s11590_023_02012_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon